

(A) 25	(B) 5/4	(C) 5	(D) 1/4
angular mom	of a particle is given by : ientum is perpendicular	to	momentum $\overrightarrow{P} = (3\hat{i} + 4\hat{j} - 2\hat{k})$. The
(A) <i>X</i> - axis		(B) Y - axis	
(C) <i>Z</i> - axis			qual angles to all the three axes
velocity ω . To of the ring. T	wo objects each of mass a he ring will now rotate w	m are attached gently	
(A) $\frac{\omega(M-2m)}{M+2m}$	(B) $\frac{\omega M}{M+2m}$	111 110	(D) $\frac{\omega(M+2m)}{M}$
centre with a		${\sf ce} \ {\sf of} \ {\sf mass} \ m \ {\sf breaks} \ {\sf f}$	horizontal axis passing through its rom the disc and flies off vertically
(A) $\frac{(M-2m)\omega}{(M-m)}$	(B) $\frac{(M+2m)\omega}{(M+m)}$	(C) $\frac{(M-2m)\omega}{(M+m)}$	(D) $\frac{(M+2m)\omega}{(M-m)}$
(20) When a mass	is rotating in a plane ab	out a fixed point, its a	angular momentum is directed along
(A) a line perp	pendicular to the plane o	of rotation(B) the radiu	IS
(C) the tanger	it to the orbit	(D) the line of rotation	making an angle of 45° to the plane on
collinear axe	s passing through their c e to rotate together along	entre of mass and pe	ds ω_1 and ω_2 are rotating along rpendicular to their plane. If the tational KE of system will be (D) None of these
(22) A ball rolls w its centre of r	ithout slipping. The radi nass <i>K</i> . If radius of the l energy will be	tus of gyration of the ball be R , then the fraction of the	ball about an axis passing through action of total energy associated with
(A) $\frac{K^2}{R^2}$	(B) $\frac{K^2}{K^2 + R^2}$	(C) $\frac{R^2}{K^2+R^2}$	(D) $\frac{K^2 + R^2}{R^2}$
	otational and translatory		
(A) $\frac{2}{9}$	(B) $\frac{2}{7}$	(C) $\frac{2}{5}$	(D) $\frac{7}{2}$
number of re			c energy of 200 J. Calculate the constant opposing couple of $5 N - m$
(A) 12.8	(B) 24	(C) 6.4	(D) 16
	ing without slipping on talkinetic energy, then t		the rotational energy of the body is
(A) Cylinder	(B) Hollow sph	ere (C) Solid cyl	inder (D) ring
pulled with a horizontal su	horizontal force of $40 N$, and the cylinder is n he angular accelerati	nd radius 0.5 <i>m</i> . If the string is now colling without slipping on a on of the cylinder will be
(A) 20	(B) 16	(C) 12	(D) 10
(27) A solid cylind released fron	ler and a hollow cylinde n the same height at the ich one will reach the bo	r, both of the same m same time on a inclir	ass and same external diameter are led plane. Both roll down without
			ether only when angle of
(C) Both toget	her		on of plane is 45°
Ũ			ing down an inclined plane of length

28) A solid cylinder of mass M and radius R rolls without slipping down an inclined plane of length L and height h. What is the speed of its centre of mass when the cylinder reaches its bottom

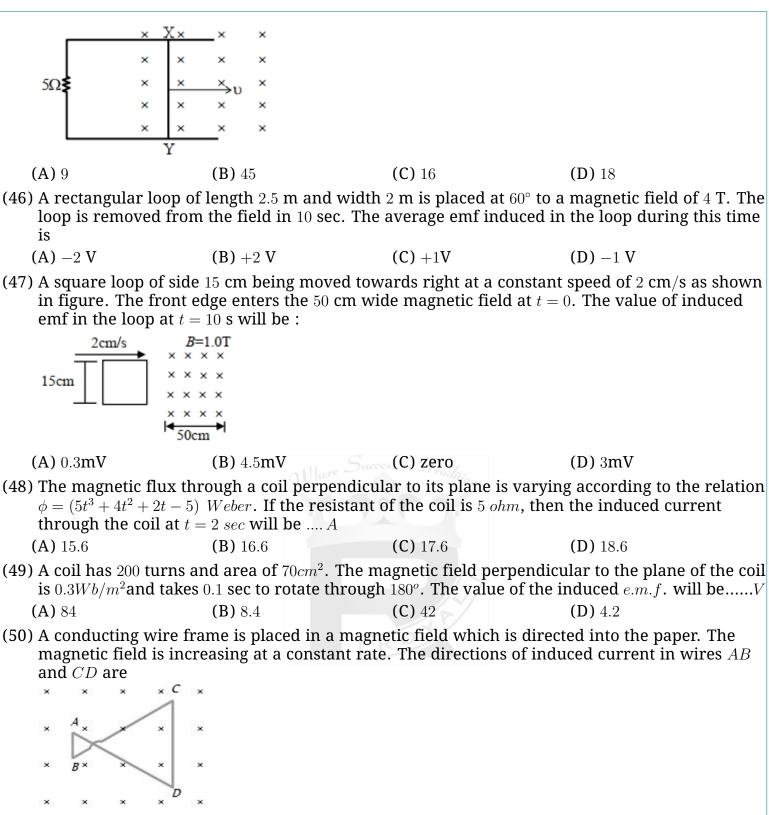
(A) $\sqrt{\frac{3}{4}gh}$	(B) $\sqrt{\frac{4}{3}gh}$	(C) $\sqrt{4 g h}$	(D) $\sqrt{2 g h}$
		id sphere (mass <i>m</i> and r រg down the incline with	adius <i>R</i>) rolling down an incline out rolling is
(A) 5 : 7	(B) 2 : 3	(C) 2 : 5	(D) 7 : 5
30°. The centre of	f mass 2 kg and radio mass of cyllnder has face will bem	us 50 cm rolls up an incli s speed of 4 m/s. The dis	ined plane of angle inclination stance travelled by the cyllinder
(A) 2.2	(B) 1.6	(C) 1.2	(D) 2.4
4 kg. (The coordir (0, 3) (2		uniform flag shaped lai shown in figure) are	mina (thin flat plate) of mass
(0, 0) (1, 0)			
(A) (1.25 m, 1.50 m)	(B) (1 m, 1.75 m) (C) $(0.75 \text{ m}, 0.75 \text{ m})$	m) (D) $(0.75 \text{ m}, 1.75 \text{ m})$
(32) A circular hole of centroid of the re Y-axis	maining circular por	tion with respect to poin	ius 'a' as shown in figure. The nt 'O' will be :
1-axis			
	X-axis		
(A) $\frac{1}{6}a$	(B) $\frac{10}{11}a$	(C) $\frac{5}{6}a$	(D) $\frac{2}{3}a$
		uare sheet of side <i>l</i> and r erpendicular to its plane	mass per unit area μ about an
(A) $\frac{\mu l^2}{12}$	(B) $\frac{\mu l^2}{6}$	(C) $\frac{\mu l^4}{12}$	(D) $\frac{\mu l^4}{6}$
the centre is cut.		of inertia of the remain	er <i>R</i> , whose rim passes through ing part of the disc about a
(A) $\frac{13MR^2}{32}$	(B) $\frac{11MR^2}{32}$	(C) $\frac{9MR^2}{32}$	(D) $\frac{15MR^2}{32}$
put one on the to	o of the other at the		two coins, each of mass $10 g$ are found to be balanced at $40.0 cm$ The value of x is
(A) 9	(B) 6	(C) 60	(D) 7
	Physic	cs - Section B (MCQ)	
(36) A particle of mass $m = 5$ is moving with a uniform speed $v = 3\sqrt{2}$ in the <i>XOY</i> plane along the line $Y = X + 4$. The magnitude of the angular momentum of the particle about the origin is			
(A) 0	(B) 60	(C) 7.5	(D) $40\sqrt{2}$
(37) A thin uniform circular disc of mass M and radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with an angular velocity ω . Another disc of same dimension but of mass $M/4$ is placed gently on the first disc coaxially. The angular velocity of the system now is			
(A) $2\omega/5$	(B) $2\omega/\sqrt{5}$	(C) $4\omega/5$	(D) $4\omega/\sqrt{5}$

(38) A mass m moves in a circle on a smooth horizontal plane with velocity v_0 at a radius R_0 . The mass is attached to a string which passes through a smooth hole in the plane as shown. The tension in the string is increased gradually and finally m moves in a circle of radius $\frac{R_0}{2}$. The final value of the kinetic energy is

(A) mv_0^2	(B) $\frac{1}{4} m v_0^2$	(C) $2mv_0^2$	(D) $\frac{1}{2} m v_0^2$	
(39) The speed of a homogeneous solid sphere after rolling down an inclined plane of vertical height <i>h</i> , from rest without sliding, is				
(A) $\sqrt{\frac{10}{7}gh}$	(B) \sqrt{gh}	(C) $\sqrt{\frac{6}{5}gh}$	(D) $\sqrt{\frac{4}{3}gh}$	
		ly of mass m about an ax etic energy of the rigid bo		
(A) $\frac{P^2[1+n^2]}{2m}$		(C) $n^2 P^2 \times 2m$	(D) $\frac{P^2}{2}\left(\frac{n^2}{I}+\frac{1}{m}\right)$	
F parallel to the s		at its centre. If the accele	a horizontal surface with force ration of the cylinder is 'a' and i	
(A) ma	(B) $\frac{5}{3}ma$	(C) $\frac{3}{2}ma$	(D) 2 ma	
			speed v_0 . A particle on the rim o beed $\sqrt{x} v_0$. Then the value of x i	
(A) 9	(B) 2	(C) 4	(D) 81	
figure Two resiston magnetic field \vec{B} is speed v The correct states and R_2 respective \mathbf{R}_1 \swarrow \checkmark \checkmark (A) Both I_1 and I_2	ors R_1 and R_2 are compointing into the pagement about the directly is	nnected across the ends o ge. An external agent pull tions of induced currents	nducting rails as shown in the f the rails. There is a uniform s the bar to the left at a constan I_1 and I_2 flowing through R_1	ſť
(C) I_1 is in clockwise direction and I_2 is in anticlockwise direction				
				1.1

(D) I_1 is in anticlockwise direction and I_2 is in clockwise direction

(44) The induced *emf* can be produced in a coil by


- A. moving the coil with uniform speed inside magnetic field
- B. moving the coil with non-uniform speed inside uniform magnetic field
- C. rotating the coil inside the uniform magnetic field

D. changing the area of the coil inside the uniform magnetic field

Choose the correct answer from the options given below:

(A) B and D only (B) B and C only (C) A and C only (D) C and D only

(45) A 1 m long metal rod XY completes the circuit as shown in figure. The plane of the circuit is perpendicular to the magnetic field of flux density 0.15 T. If the resistance of the circuit is 5Ω , the force needed to move the rod in direction, as indicated, with a constant speed of 4 m/s will be $10^{-3} N$

(A) B to A and D to C (B) A to B and C to D (C) A to B and D to C (D) B to A and C to D

Chemistry - Section A (MCQ)	(58) For the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the rate of reaction is expressed as
 (51) <i>HNO</i>² acts both as reductant and oxidant, while <i>HNO</i>³ acts only as oxidant. It is due to their (A) Solubility ability (B) Maximum oxidation number (C) Minimum oxidation number (D) Minimum number of valence electrons (52) Which of the following is a redox reaction (A) <i>NaCl</i> + <i>KNO</i>³ → <i>NaNO</i>³ + <i>KCl</i> 	(A) $-\frac{\Delta[I_2]}{\Delta t} = -\frac{\Delta[H_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[HI]}{\Delta t}$ (B) $\frac{\Delta[I_2]}{\Delta t} = \frac{\Delta[H_2]}{\Delta t} = \frac{\Delta[HI]}{2\Delta t}$ (C) $\frac{\Delta[H_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[I_2]}{\Delta t} = -\frac{\Delta[HI]}{\Delta t}$ (D) None of these (59) The rate law for the reaction $RCl + NaOH(aq) \rightarrow ROH + NaCl$ is given by Rate = $K_1[RCl]$. The rate of the reaction will be (A) Doubled on doubling the concentration
(B) $CaC_2O_4 + 2HCl \rightarrow CaCl_2 + H_2C_2O_4$ (C) $Mg(OH)_2 + 2NH_4Cl \rightarrow MgCl_2 + 2NH_4OH$ (D) $Zn + 2AgCN \rightarrow 2Ag + Zn(CN)_2$	of sodium hydroxide (B) Halved on reducing the concentration o alkyl halide to one half
(53) In the balanced chemical reaction, $IO_3^- + a I^- + b H^+ \rightarrow c H_2O + d I_2$ a, b, c and d respectively correspond to (A) 5, 6, 3, 3 (B) 5, 3, 6, 3	(C) Decreased on increasing the temperature of the reaction(D) Unaffected by increasing the temperature of the reaction
 (C) 3, 5, 3, 6 (D) 5, 6, 5, 5 (54) Which one of the following cannot function as an oxidising agent ? (A) I⁻ (B) S(s) 	(60) The data for the reaction $A + B \rightarrow C$ is The rate law corresponds to the above data is Exp. $[A]_0$ $[B]_0$ Initial rate
 (C) NO₃⁻ (aq) (D) Cr₂O₇²⁻ (55) Which of the following species can function both as oxidizing as well as reducing agent ? (A) Cl⁻ (B) ClO₄⁻ 	
(C) ClO^- (D) MnO_4^-	(2) 0.024 0.070 0.80
(56) For the reaction $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ under certain conditions of temperature and partial pressure of the reactants, the rate of formation of NH_3 is $0.001 kg h^{-1}$. The	(3) 0.024 0.035 0.10
rate of conversion of H_2 under the same conditions is (A) $1.82 \times 10^{-4} kg/hr$ (B) $0.0015 kg/hr$	(4) 0.012 0.070 0.80
(C) $1.52 \times 10^4 kg/hr$ (D) $1.82 \times 10^{-14} kg/hr$	(A) Rate = $k [B]^3$ (B) Rate = $k [B]^4$
(57) For a first order reaction $A \rightarrow B$ the reaction rate at reactant concentration of $0.01 M$ is found to be $2.0 \times 10^{-5} mol \ L^{-1}s^{1}$. The half life period of the reaction is sec (A) 220 (B) 30	(C) Rate = $k [A] [B]^3$ (D) Rate = $k [A]^2 [B]^2$ (61) For the reaction taking place on water, the order of reaction is $H_2 + Cl_2 \xrightarrow{\text{Sunlight}} 2HCl$ (A) 1 (B) 2

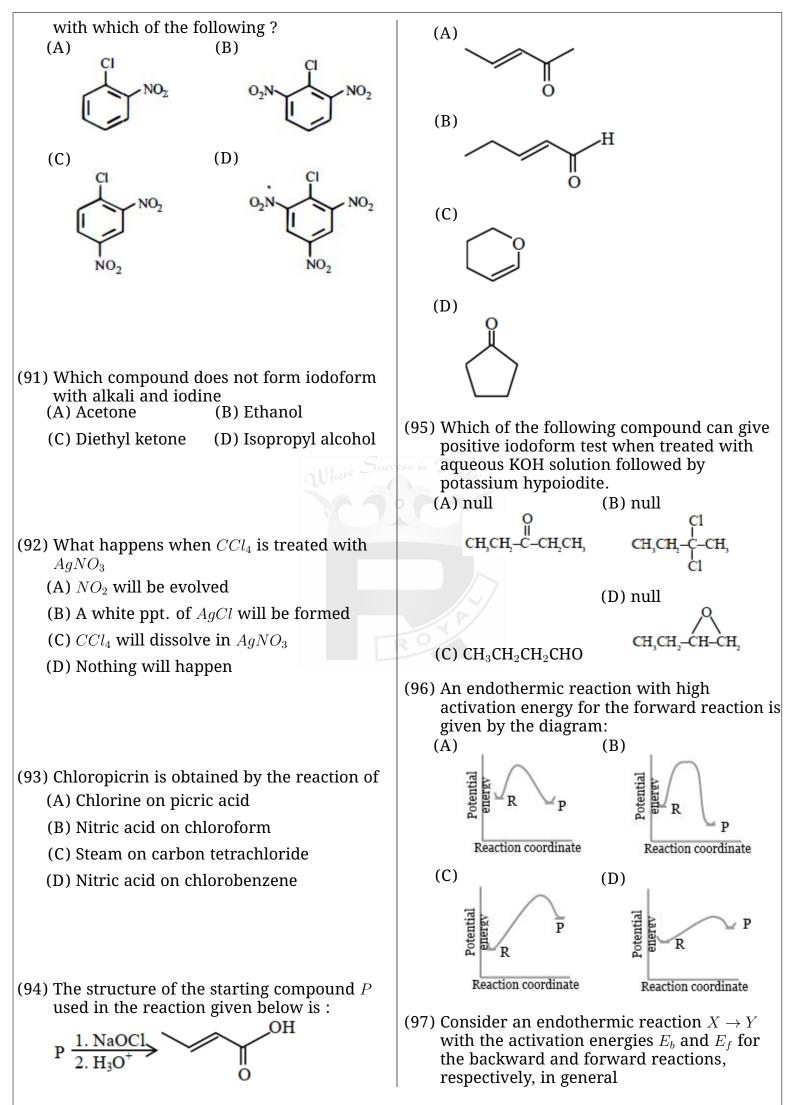
(D) 347

(C) 300

(A)
$$-\frac{\Delta[I_2]}{\Delta t} = -\frac{\Delta[H_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[HI]}{\Delta t}$$

(B) $\frac{\Delta[I_2]}{\Delta t} = \frac{\Delta[H_2]}{\Delta t} = \frac{\Delta[HI]}{2\Delta t}$

(C)
$$\frac{\Delta[H_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[I_2]}{\Delta t} = -\frac{\Delta[HI]}{\Delta t}$$


- The rate law for the reaction $RCl + NaOH(aq) \rightarrow ROH + NaCl$ is given by Rate $= K_1[RCl]$. The rate of the reaction will be
 - A) Doubled on doubling the concentration of sodium hydroxide
 - B) Halved on reducing the concentration of alkyl halide to one half
 - C) Decreased on increasing the temperature of the reaction
 - D) Unaffected by increasing the temperature of the reaction

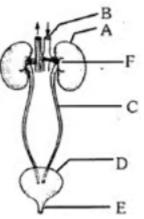
	rate law corresponds to the above data is						
	Exp.	$[A]_0$	$[B]_0$	Initial rate			
	(1)	0.012	0.035	0.10			
	(2)	0.024	0.070	0.80			
	(3)	0.024	0.035	0.10			
	(4)	0.012	0.070	0.80			
(A) Rate =	$k [B]^3$	(B) Rat	$\mathbf{e} = k [B]^4$			
((C) Rate = $k [A] [B]^3$ (D) Rate = $k [A]^2 [B]^2$						
51) For the reaction taking place on water, the order of reaction is $H_2 + Cl_2 \xrightarrow{\text{Sunlight}} 2HCl$							
	(A) 1 (B) 2						

(A) 1	(B) 2
(C) 3	(D) 0

(62) For the reaction system	0.4 M in 15 minutes. The time taken for the
$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ volume is	concentration to change from $0.1 M$ to
suddenly produced to half its value by increasing the pressure on it. If the react	ion $0.025 M$ is min. (A) 7.5 (B) 15
is of first order with respect to O_2 and	(C) 30 (D) 60
second order with respect to <i>NO</i> , the rate reaction will	(70) $t_{\frac{1}{4}}$ can be taken as the time taken for the
(A) Diminish to one fourth of its initial val	
(B) Diminish to one eighth of its initial val	initial value. If the rate constant for a first
(C) Increase to eight times of its initial val	$\frac{1}{4}$
(D) Increase to four times of its initial val	(11) 0.10/11 (D) $0.20/11$
(63) In a zero-order reaction, for every $10 {}^{\circ}C$ r	(C) 0.09/R $(D) 0.13/R$
of temperature, the rate is doubled. If the temperature is increased from $10 {}^{\circ}C$ to $100 {}^{\circ}C$, the rate of the reaction will becom times	$Rt = \log C_0 - \log C_t$. The straight line graph is obtained by plotting
(A) 256 (B) 512	(C) time v/s C _t (D) $\frac{1}{\text{time}}$ v/s $\frac{1}{C_t}$
(C) 64 (D) 128	(72) The half-life period of a first order reaction
(64) Decomposition of X exhibits a rate constant X	is 15 <i>minutes</i> . The amount of substance left
for $0.05 \mu g/year$. How many years are required for the decomposition of $5 \mu g$ of	after one hour will beX(A) $\frac{1}{4}$ of the original(B) $\frac{1}{8}$ of the original
into $2.5 \mu g$?	amount
(A) 50 (B) 25	(C) $\frac{1}{16}$ of the original (D) $\frac{1}{32}$ of the original
(C) 20 (D) 40	amount amount
(65) $A \rightarrow B$ The above reaction is of zero order. Half of this reaction is 50 min. The time taken the concentration of A to reduce to one-fourth of its initial value is	
(A) 74 (B) 75	Slope = -4606 K
(C) 72 (D) 73	
(66) In a first order reaction the concentration	n of 1/T
reactant decreases from $800 mol/dm^3$ to	(A) $10^{-6} s^{-1}$ (B) $2 \times 10^{-4} s^{-1}$
$50 mol/dm^3$ is 2×10^2 sec. The rate constant	(C) $10^{-4} s^{-1}$ (D) $4 \times 10^{-4} s^{-1}$
of reaction in sec ⁻¹ is (A) 2×10^4 (B) 3.45×10^{-5}	(74) For a first order gas phase reaction :
(C) 1.386×10^{-2} (D) 2×10^{-4}	$A_{(g)} \rightarrow 2B_{(g)} + C_{(g)}$
(67) A first order reaction which is 30% compl in 30 minutes has a half-life period of	
(A) 24.2 (B) 58.2	(A) $\frac{2.303}{t} \log\left(\frac{P_0}{P_0 - P_t}\right)$ (B) $\frac{2.303}{t} \log\left(\frac{2P_0}{3P_0 - P_t}\right)$
(C) 102.2 (D) 120.2	
(68) For a first order reaction, the half-life	(C) $\frac{2.303}{t} \log \left(\frac{P_0}{2P_0 - P_t} \right)$ (D) $\frac{2.303}{t} \log \left(\frac{2P_0}{2P_0 - P_t} \right)$
period is independent of	(75) Time required for 99.9% completion of a first order reaction is time the
(A) Initial concentration	time required for completion of 90%
(B) Cube root of initial concentration	reaction.(nearest integer).
(C) First power of final concentration	(A) 5 (B) 4
(D) Square root of final concentration	(C) 3 (D) 8
(69) In a first order reaction, the concentratio of the reactant, decreases from 0.8 <i>M</i> to	n (76) Reaction of <i>t</i> -butyl bromide with sodium methoxide produces

(c) Soditane (b) Isopurjene (c) Sodium <i>t</i> - (d) <i>t</i> - buryl methyl ethoriz (c) <i>t</i> - bromopertane is heated with potassium ethoriz (in retanol. The major product a data for duct B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product B. The total sum of τ electrons in product A and product P. The total sum of τ electrons in product A and product P. The total sum of τ electrons in product A and B. (c) Proteins (c) Prove (a) Distanting (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) A - L, B - HL, C - HL, D - H (c) R - NOL-C, HL, MH (c) R - NOL-C, HL, MH (c) R - NOL-C, HL, MH (c) A - CH ₂ - CH			(92) The major products from the following	
$ \begin{array}{c} (1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(A) Isobutane	(B) Isobutylene	(82) The major products from the following reaction sequence are product A and	
(77) $2-b$ bromopentane is heated with potassium ethoxide in ethanol. The major product A and product B are $\dots \dots$ (nearest integer) (A) Pentene -1 (B) cis pentene -2 (C) trans pentene -2 (D) 2-ethoxypentane (78) Match List I / <i>i</i> (D) 2-ethoxypentane in List I to give product in List II (C) T (D) 8 (C) Performance of alcoholic K/OH, the compound formed is (A) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A - <i>I</i> , <i>B</i> - <i>I</i> , <i>C</i> - <i>I</i> / <i>V</i> , <i>D</i> - <i>I</i> I (C) A catesiation occurs in S _N 1 reaction and retention occurs in S _N 1 reaction and inversion occurs in S _N 1 reaction and miversion occurs in S _N 1 reaction and inversion occurs in S				
e thoxide in ethanol. The major product obtained is (A) Pentene - 1 (B) cis pentene - 2 (C) trans pentene - 2 (D) 2 ethoxypentae (78) Match List <i>I</i> Ji List <i>II</i> - Bromopropane is reacted with reagents in List <i>I</i> to give product in List <i>II</i> (A) 5 (B) 6 (C) 7 (D) 8 (B) Diazo-coupling is useful to prepare some (A) Pesticides (B) Proteins (C) Dyes (C) Dyes (D) Vitamins (B) Proteins (C) Dyes (D) Vitamins (B) A - III, B - III, C - III, D - II (B) A - II, B - III, C - III, D - II (C) A - I, B - III, C - III, D - II (D) A - I, B - III, C - IV, D - II (C) A - I, B - III, C - IV, D - II (D) A - I, B - III, C - IV, D - II (C) A - I, B - III, C - IV, D - II (C) A - I, B - III, C - IV, D - II (D) A - I, B - III, C - IV, D - II (C) A - I, B - III, C - IV, D - II (C) A - I, B - III, C - IV, D - II (D) A - I, B - III, C - IV, D - II (C) A - I, B - III, C - IV, D - II (D) A - I, B - III, C - C - IV, D - II (C) A - I, B - III, C - IV, D - II (D) A - I, B - III, C - IV, D - II (C) A - I, B - III, C - IV, D - II (D) A - I, B - III, C - IV, D - II (C) A - I, B - III, C - IV, D - II (B) A - Cl3 - Cl4, C - Cl4, - Cl4				
obtained is (A) Pentene -1 (B) cis pentene -2 (C) trans pentene -2 (D) 2-ethoxypentane (78) Match List <i>J</i> with List <i>II</i> 1 - Bromopropane is reacted with reagents in List <i>I</i> to give product in List <i>II</i> $\frac{ List - Keagent List I - Product}{ List I - Product} IF ster C \Delta_N O_2 II AlteneD I_L C O O A_g II AlteneD I_L C O A A - III, D - II, D - II (C) A - I, B - III, C - III, D - II (D) A - I, B - III, C - III, D - II (C) A - I, B - III, C - III, D - II (D) A - I, B - III, C - III, D - II (C) A cernestation occurs in SN1 reaction and inversion occurs in SN2 reaction. (8) Racemisation occurs in SN1 reaction and inversion occurs in SN1 reaction and inversion occurs in SN1 reaction and inversion occurs in SN2 reaction. (8) Compound A formed in the following reaction reacts with B gives the product C. Find out A and B, CH3 - CH2 - CH2 - CH2 - BF (C) A = CH5 - C = CN+, B = CH3 - C = C = CH4 - H2 (B) A = CH5 - CH2 - CH2 - BF (C) A = CH5 - CH2 - CH2 - BF (B) A = CH5 - CH2 - CH2 - BF (C) A = CH5 - CH2 - CH2 - BF (B) A = CH5 - C = CN+, B = CH3 - C = CH (B) Menol (D) L - butyl phenyl (D) L - butyl phenyl (D) L - butyl phenyl$				
(A) Pentene -1 (B) Cits pentene -2 (C) trans pentene -2 (D) 2 - ethoxypentane (A) S (B) 6 (C) 7 (D) 8 (A) 5 (B) 6 (C) 7 (D) 8 (A) 5 (B) 6 (C) 7 (D) 8 (B) 7 (C) 7 (D) 8 (B) 7 (C) 7 (D) 8 (B) 7 (C) 7 (D) 8 (B) 7 (C) 7 (D) 8 (C) 9 (C) 7 (D) 8 (C) 7 (D) 8 (C) 9 (C) 7 (D) 8 (C) 7 (D) 8 (C) 9 (C) 9 (C) 7 (D) 8 (C) 9 (C) 9 (C) 7 (D) 8 (C) 9 (C) 9 (C) 7 (D) 8 (C) 9 (C) 9 (C) 7 (D) 8 (C) 9 (C) 7 (D) 8 (C) 9 (C) 7 (D) 8 (C) 9 (C) 9 (C) 7 (D) 8 (C) 9 (C) 9 (C) 9 (C) 17 (C) 17 (C) 9 (C) 17 (C) 9 (C) 17 (C) 17 (C) 9 (C) 17 (C)		or. The major product	$B \xleftarrow{(i) Br_2} \bigoplus \xleftarrow{(i) Br_2} A$	
(178) Match List <i>I</i> with <i>Ist II</i> 1 - Bromopropane is reacted with reagents in List <i>I</i> to give product in List <i>II</i> (78) Match List <i>II</i> to give product in List <i>II</i> (78) Match List <i>I</i> to give product in List <i>II</i> (79) The correct statement regarding nucleophilic substitution reaction in a chiral alkyl halide is; (A) $A = III, C = III, D = II$ (C) $A = I, B = III, C = III, D = II$ (C) $A = I, B = III, C = III, D = II$ (P) $A = I, B = III, C = III, D = II$ (P) $A = I, B = III, C = III, D = II$ (P) The correct statement regarding nucleophilic substitution reaction in a chiral alkyl halide is; (A) Retention occurs in S _N 1 reaction and inversion occurs in S _N 2 reaction. (B) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 1 reaction. (C) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 2 reaction. (B) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 1 reaction. (B) Camenisation occurs in S _N 1 reaction and inversion occurs in S _N 1 reaction and inversio		(B) cis pentene -2		
	(C) trans pentene-	2 (D) 2 -ethoxypentane	(A) 5 (B) 6	
I - Bromopropane is reacted with reagent in List / to give product in List // is list 1 big 2 gradient in List / to give product in List // is list 1 big 2 gradient in List // to give product in List // is list 1 big 2 gradient (A) Pesticides (B) Proteins (B) Proteins (C) Dyes (D) Vitamins (C) A diazoniun salt (B) An alcohol (C) A nitrie (D) A dye (C) A classition occurs in Syl reaction. (C) Racemisation occurs in Syl reaction. (C) Racemisation occurs in Syl reaction and inversion occurs in Syl reaction. (C) Racemisation occurs in Syl reaction. (C) Racemisation occurs in Syl reaction. (D) Racemisation occurs in Syl reaction and inversion occurs in Syl reaction. (C) Racemisation occurs in Syl reaction and inversion occurs in Syl reaction. (C) Racemisation occurs in Syl reaction. (D) Callacella and C. (C) Composed and C. (C) Composed and C. (C) Composed and C. (C) Composed and C. (C) Male A diazonia and the following (D) CH_3/NH_2 < (CH_3)/NH < NH_3 (C) CH_3/N	(78) Match List <i>I</i> with	List II		
$A \ KOH(ac)$ I Nitrile $B \ KCN (alc)$ II I Alkerne $C \ AgNO_3$ III Alkerne $D \ H_2CCOOAg$ IV Nitroalkane(A) $A = IV, B = III, C = III, D = I$ (B) $A = III, B = I, C - IV, D = II$ (C) $A = I, B = III, C = III, D = IV$ (D) $A = I, B = III, C = IV, D = II$ (C) $A = I, B = III, C = IV, D = II$ (C) $A = I, B = III, C = IV, D = II$ (C) $A = I, B = III, C = IV, D = II$ (C) $A = I, B = III, C = IV, D = II$ (C) $A = I, B = III, C = IV, D = II$ (C) $A = I, B = III, C = IV, D = II$ (C) $A = IV, B = III, C = IV, D = II$ (C) $A = IV, B = III, C = IV, D = II$ (C) $A = IV, B = III, C = IV, D = II$ (C) $A = IV, B = III, C = IV, D = II$ (C) $A = IV, B = III, C = IV, D = II$ (C) $A = IV, B = III, C = IV, D = II$ (C) $A = IV, B = III, C = IV, D = II$ (C) $A = CH_3 = CH_3 = CH_3 = Ceccccccccccccccccccccccccccccccccccc$	1– Bromopropane	e is reacted with reagents		
I K K K K K K K K K K K K	List <i>I</i> – Reagent	ListII–Product	(C) Dyes (D) Vitamins	
$\frac{C A_{0} NO_{2}}{(D + A_{c} CCOOA_{9})} \frac{DV}{DV} Nitroalkane}$ (A) $A - UV, B - III, C - IV, D - I$ (B) $A - UI, B - III, C - IV, D - II$ (C) $A - II, B - III, C - IV, D - II$ (C) $A - II, B - III, C - IV, D - II$ (C) $A - I, B - III, C - IV, D - II$ (C) Racemisation occurs in S_N 1 reaction and inversion occurs in S_N 2 reaction. (B) Racemisation occurs in S_N 1 reaction and inversion occurs in S_N 1 reaction and S_N^2 reaction. (B) Compound A formed in the following reaction reacts with B gives the product C_{L_1} (C) $M_1 - C = CH_3 - CH_2 - CH_2 - Br (C) A = CH_3 - CH_2 - CH_2 - Br (C) A = CH_3 - CH_2 - CH_2 - Br (C) A = CH_3 - CH_2 - CH_2 - Br (C) A = CH_3 - CH_2 - CH_3, B = CH_3 - C = CH (B) A = CH_3 - CH_2 - CH_3, B = CH_3 - CH_2 - CH_2 (B) A = CH_3 - CH_2 - CH_3, B = CH_3 - CH_2 - CH_4 (B) CH_{13} - II > I$	A KOH(alc)	<i>I</i> Nitrile		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B KCN (alc)	II Ester		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$C AgNO_2$	III Alkene	-	
(A) $A = III, C = III, C = III, D = I$ (B) $A = III, C = III, D = II$ (C) $A = I, B = III, C = III, D = II$ (D) $A = I, B = III, C = III, D = II$ (E) $A = III, C = III, D = II$ (F) The correct statement regarding nucleophilic substitution reaction in a chiral alkyl halide is ; (A) Retention occurs in S_{N1} reaction and inversion occurs in S_{N1} reaction and retention occurs in S_{N2} reaction. (B) Racemisation occurs in S_{N1} reaction and inversion occurs in S_{N2} reaction. (C) Racemisation occurs in both S_{N1} and S_{N2} reactions. (D) Racemisation occurs in S_{N2} reaction. (C) Racemisation occurs in S_{N1} reaction and inversion occurs in S_{N2} reaction. (B) Racemisation occurs in S_{N1} reaction and inversion occurs in S_{N2} reaction. (B) Racemisation occurs in S_{N1} reaction and inversion occurs in S_{N2} reaction. (B) Racemisation occurs in S_{N1} reaction and inversion occurs in S_{N2} reaction. (B) Racemisation occurs in S_{N1} reaction and inversion occurs in S_{N2} reaction. (B) Racemisation occurs in S_{N1} reaction and inversion occurs in $S_{N2} = cacton.$ (C) $H_3 - CH_3 - CH_2 - CH_2 - B_{T}$ (B) $A = CH_3 - CH = CH_2 - B_{T}$ (C) $A = CH_3 - CH = CH_2 - B_{T}$ (C) $A = CH_3 - CH = CH_2 - B_{T}$ (C) $A = CH_3 - CH = CH_2 - B_{T}$ (B) $A = CH_3 - CH = CH_2 - B_{T}$ (C) $A = CH_3 - CH = CH_3 - B = CH_3 - CH_2 - CH_3$ (B) $D = Lourd brow motion to motion the reactor with t butanol, the product would be (A) Benzene (B) Phenol (D) t - butyl phenyl(D) t - butyl phenyl(D) t - butyl phenyl(D) t - butyl phenyl(D) t - butyl phenyl$	D H ₃ CCOOAg	IV Nitroalkane		
(B) $A - III, B - I, C - IV, D - II$ (C) $A - I, B - III, C - III, D - IV$ (D) $A - I, B - III, C - IV, D - II$ (79) The correct statement regarding nucleophilic substitution reaction in a chiral alkyl halide is ; (A) Retention occurs in S _N 1 reaction and inversion occurs in S _N 2 reaction. (B) Racemisation occurs in S _N 1 reaction and retention occurs in S _N 2 reaction. (C) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 1 reaction and retention occurs in S _N 2 reaction. (C) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 1 reaction and is (A) C _R _{H₃} CH ₃ - CH ₃ - CH ₃ - C= C-CH ₂ - CH ₂ + NAB ₁ (B) (CH ₃) ₂ NH < NH ₃ < (CH ₃) ₂ NH (B) (CH ₃) ₂ NH < NH ₃ < (CH ₃) ₂ NH (B) (CH ₃) ₂ NH < NH ₃ < (CH ₃) ₂ NH (B) (CH ₃) ₂ NH < NH ₃ < (CH ₃) ₂ NH (C) NI a < CH ₃ - CH ₂ - CH ₂ - Br (C) A = CH ₃ - CH ₂ - CH ₂ - Br (C) A = CH ₃ - CH ₂ - CH ₃ - B = CH ₃ - C = CH (D) A = CH ₃ - C = CN ⁺ , B = CH ₃ - C = CH (D) A = CH ₃ - C = CN ⁺ , B = CH ₃ - C = CH (A) IV > III > II > IV (D) I > III > II > IV N (B) C ₂ H ₃ Br $\frac{AgCN}{2} \times X \frac{Reduction}{2n-Hg/HCl}} Y$, Here Y is (A) Ethyl methyl (B) <i>n</i> propylamine amine (C) Isopropylamine (D) Ethylamine (90) A major component of Borsch reagent is abriand thyresion durated byreacting byraphicits	(A) $A - IV, B - III$, C - II, D - I		
(C) $A - I, B - III, C - IVI, D - IV$ (D) $A - I, B - III, C - IV, D - II$ (A) A diazonium salt (B) An alcohol (C) A nitrite (D) A dye (C) $m - NO_2 - C_6 H_4 N H_2$ (D) $C_{6} H_5 C H_2 N H_2$ (B) C $m - NO_2 - C_6 H_4 N H_2$ (C) $m - NO_2 - C_6 H_4 N H_2$ (C) $m - NO_2 - C_6 H_4 N H_2$ (B) C $H_3 N H_2 < NH_3 < (CH_3)_2 N H$ (B) $(CH_3)_2 N H < NH_3 < (CH_3)_2 N H$ (B) $(CH_3)_2 N H < NH_3 < (CH_3)_2 N H$ (B) $(CH_3)_2 N H < NH_3 < (CH_3)_2 N H$ (B) $(CH_3)_2 N H < (CH_3)_2 N H$ (C) $(CH_3)_2 N H < (CH_3)_2 N H$ (B) $(CH_3)_2 N H < (CH_3)_2 N H$ (C) $(CH_3)_2 N H < (CH_3)_2 N H$ (B)	(B) $A - III, B - I, C$	C - IV, D - II		
(79) The orrect statement regarding nucleophilic substitution reaction in a chiral alkyl halide is ; (A) Retention occurs in S _N 1 reaction and inversion occurs in S _N 2 reaction. (B) Racemisation occurs in S _N 2 reaction. (C) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 2 reaction. (C) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 2 reaction. (B) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 2 reaction. (C) Racemisation occurs in S _N 1 reaction and inversion occurs in S _N 2 reaction. (B) Case CH ₃ - C = C-CH ₂ - CH ₃ (C) A = CH ₃ - CH ₂ - CH ₂ - Br (C) A = CH ₃ - CH ₂ - CH ₂ - Br (C) A = CH ₃ - CH ₂ - CH ₃ , B = CH ₃ - CH ₂ - CH ₃ (81) When phenyl magnesium bromide reacts with <i>t</i> butanol, the product would be (A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl			(A) A diazonium salt (B) An alcohol	
10) Interposition of the strongest base is 11) alkyl halide is ; (A) Retention occurs in S _N 1 reaction and 11) reaction occurs in S _N 2 reaction. (B) Racemisation occurs in S _N 1 reaction and 12) $C_{6}H_{5}NH_{2}$ (B) $p - NO_{2}C_{6}H_{4}NH_{2}$ (C) $m - NO_{2} - C_{6}H_{4}NH_{2}$ (D) $C_{6}H_{5}CH_{2}NH_{2}$ (B) $p - NO_{2}C_{6}H_{4}NH_{2}$ (C) $m - NO_{2} - C_{6}H_{4}NH_{2}$ (D) $C_{6}H_{5}CH_{2}NH_{2}$ (B) $C_{6}H_{5}CH_{2}NH_{2}$ (C) $m - NO_{2} - C_{6}H_{4}NH_{2}$ (D) $C_{6}H_{5}CH_{2}NH_{2}$ (B) $C_{6}H_{5}CH_{2}NH_{2}$ (C) $m - NO_{2} - C_{6}H_{4}NH_{2}$ (D) $C_{6}H_{5}CH_{2}NH_{2}$ (B) $C_{6}H_{5}CH_{2}NH_{2}$ (B) $C_{6}H_{5}CH_{2}NH_{2}$ (C) $m - NO_{2} - C_{6}H_{4}NH_{2}$ (D) $C_{6}H_{5}CH_{2}NH_{2}$ (B) $C_{6}H_{5}CH_{2}NH_{2}$ (C) $m - NO_{2} - C_{6}H_{4}NH_{2}$ (C) $M - NO_{2} - C_{6}H_{4}NH_{2}$ (B) $CH_{3})_{2}NH + CH_{3}NH_{2}$ and $(CH_{3})_{2}NH$ (B) $(CH_{3})_{2}NH - NH_{3} < (CH_{3})_{2}NH$ (B) $(CH_{3})_{2}NH - NH_{3} < (CH_{3})_{2}NH$ (B) $(CH_{3})_{2}NH - NH_{3} < (CH_{3})_{2}NH$ (B) $(CH_{3})_{2}NH - NH_{3} < (CH_{3})_{2}NH$ (C) $NH_{3} - CH_{3})_{2}NH - NH_{3}$ (B) $M + CH_{3} - CH_{2} - CH_{2} - CH_{2} + NBH_{1}$ (C) $A = CH_{3} - CH_{2} - CH_{2} - BH_{1}$ (C) $A = CH_{3} - CH_{2} - CH_{3}$, $B = CH_{3} - C = CH_{1}$ (B) $A = CH_{3} - CH_{2} - CH_{3}$, $B = CH_{3} - CH_{2} - CH_{3}$ (B) $N + n phenyl$ magnesium bromide reacts with <i>t</i> butanol, the product would be (A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl (D) <i>t</i> - butyl phenyl	(D) $A - I, B - III, C$	C-IV, D-II	(C) A nitrite (D) A dye	
alkyl halide is ; (A) Retention occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (B) Racemisation occurs in S_N^1 reaction and retention occurs in S_N^2 reaction. (C) Racemisation occurs in S_N^1 reaction and inversion occurs in S_N^1 reaction. (B) Racemisation occurs in S_N^1 reaction and inversion occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (B) Compound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - CH_2 - CH_3 - CH_2 - CH_2 - CH_2 - H_3 - CH_2 - Br (B) A = CH_3 - CH = CH_2, B =CH_3 - CH_2 - CH_2 - Br (C) A = CH_3 - CH = CH_3, B = CH_3 - C = CH(D) A = CH_3 - CH = CH_3, B = CH_3 - C = CH(B) A = CH_3 - CH = CH_3, B = CH_3 - C = CH(C) A = CH_3 - CH = CH_3, B = CH_3 - C = CH(B) A = CH_3 - CH = CH_3, B = CH_3 - C = CH(C) II > III > II > I > II > II > IV(C) II > III > II > I > IV (D) I > III > II > IV(S) C_2H_5Br \frac{AgCN}{2n-Hg/HCl} X \frac{Reduction}{2n-Hg/HCl} Y, Here Y is(A) Ethyl methyl (B) n – propylamineamine(C) Isopropylamine (D) Ethylamine(S) A major component of Borsch reagent isA major theoremistry budnetion events for the share for$				
(A) Retention occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (B) Racemisation occurs in S_N^2 reaction. (C) Racemisation occurs in S_N^2 reaction. (C) Racemisation occurs in S_N^2 reaction. (C) Racemisation occurs in S_N^1 reaction and inversion occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (B) Racemisation occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (B) Racemisation occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (B) Campound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C = CH_+ Na \rightarrow A \xrightarrow{B} CH_3 - C = C - CH_2 - CH_2 + NaBr (C) = CH_3 - CH_2 - CH_2 - Br (B) A = CH_3 - CH = CH_2, B = CH_3 - CH_2 - CH_3(B) A = CH_3 - CH = CH_2, B = CH_3 - CH_2 - CH_3(B) A = CH_3 - CH = CH_2, B = CH_3 - CH_2 - CH_3(B1) When phenyl magnesium bromide reacts with t butanol, the product would be (A) Benzene (B) Phenol(D) t - butyl phenyl(D) t - butyl phenyl$	alkyl halide is ;		(80) Alliong the following, the strongest base is	
(B) Racemisation occurs in S_N^2 reaction. (C) Racemisation occurs in S_N^2 reaction. (C) Racemisation occurs in both S_N^1 and S_N^2 reactions. (D) Racemisation occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (80) Compound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C = CH_1 = A = A = CH_3 - C = C - CH_2 - CH_2 + NBar}$ (B) $A = CH_3 - CH = CH_2 - Br$ (C) $A = CH_3 - CH = CH_2 - Br$ (C) $A = CH_3 - CH = CH_2 - Br$ (C) $A = CH_3 - CH = CH_2 - Br$ (C) $A = CH_3 - CH = CH_2 - Br$ (C) $A = CH_3 - CH = CH_3 - B = CH_3 - CH_2 - CH_3$ (81) When phenyl magnesium bromide reacts with <i>t</i> butanol, the product would be (A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl (D) <i>t</i> - butyl phenyl			(C) $m - NO_2 - C_6 H_4 N H_2$	
retention occurs in S_N^2 reaction. (C) Racemisation occurs in both S_N^1 and S_N^2 reactions. (D) Racemisation occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (80) Compound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C = CH + Na \rightarrow A \xrightarrow{B} CH_3 - C = C - CH_2 - CH_2 + NaBr (C) L_{13}(A) A = CH_5 - C \equiv \overline{CNa}^+, B = CH_5 - CH_2 - CH_2 - Br (B) A = CH_3 - CH_2 - CH_2 - Br(B) A = CH_3 - CH_2 - CH_2 - Br(C) A = CH_3 - CH_2 - CH_2 - Br(C) A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH(D) A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH(B) A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH(B) A = CH_3 - CH_2 - CH_3, B = CH_3 - CH_2 - CH_3(81) When phenyl magnesium bromide reactswith t butanol, the product would be(A) Benzene (B) Phenol(D) t - butyl phenyl(D) t - butyl phenyl$				
(C) Racemisation occurs in both $S_N 1$ and $S_N 2$ reactions. (D) Racemisation occurs in $S_N 1$ reaction and inversion occurs in $S_N 2$ reaction. (80) Compound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C = CH + N_A \rightarrow A \xrightarrow{B} CH_3 - C = C - CH_2 - CH_2 + NaBr(C) H_3 = CH_3 - CH = CH_2, B =CH_3 - CH_2 - CH_2 - Br(B) A = CH_3 - CH = CH_2, B =CH_3 - CH_2 - CH_2 - Br(C) A = CH_3 - CH_2 - CH_3, B = CH_3 - C = CH(D) A = CH_3 - CH = CH_3, B = CH_3 - CH = CH_3(81) When phenyl magnesium bromide reactswith t butanol, the product would be(A) Benzene (B) Phenol(D) t - butyl phenyl(C) Racemisation occurs in both S_N 1 and S_N 2(C) Racemisation occurs in S_N 1 reaction andinversion occurs in S_N 1 reaction andinversion occurs in S_N 1 reaction andinversion occurs in S_N 2 reaction.(C) NH_3 < CH_3 NH_2 < (CH_3)_2 NH(B) (CH_3)_2 NH < NH_3 < CH_3 NH_2(C) NH_3 < CH_3 NH_2 < (CH_3)_2 NH(B) (CH_3)_2 NH < NH_3(B) Ih the following compounds the order of basicity is as follows NH(B) Ih = III > II > II > II > II > II > II >$				
reactions. (D) Racemisation occurs in S_N^1 reaction and inversion occurs in S_N^2 reaction. (80) Compound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C \equiv CH + Na \rightarrow A \xrightarrow{B} CH_3 - C \equiv C - CH_2 - CH_2 + NaBr}$ (A) $A = CH_5 - C \equiv \overline{CNa^+}, B = CH_3 - C \equiv C-H_2 - CH_2 + NaBr}$ (B) $A = CH_3 - CH = CH_2, B = CH_3 - CH_2 - CH_2 - Br$ (B) $A = CH_3 - CH_2 - CH_2 - Br$ (C) $A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH$ (D) $A = CH_3 - C \equiv \overline{CN} \stackrel{+}{+}, B = CH_3 - CH_2 - CH_3$ (81) When phenyl magnesium bromide reacts with <i>t</i> butanol, the product would be (A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl (D) <i>t</i> - butyl phenyl				
inversion occurs in $S_N 2$ reaction. (80) Compound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C \equiv CH_N = A \xrightarrow{B} CH_3 - C \equiv C - CH_2 - CH_2 + NaBr}$ (A) $A = CH_5 - C \equiv \overline{CNa^+}, B =$ $CH_5 - CH_2 - CH_2 - Br$ (B) $A = CH_3 - CH = CH_2, B =$ $CH_3 - CH_2 - CH_2 - Br$ (C) $A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH$ (D) $A = CH_3 - C \equiv \overline{CN} \xrightarrow{+}, B = CH_3 - CH_2 - CH_3$ (81) When phenyl magnesium bromide reacts with <i>t</i> butanol, the product would be (A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl (C) <i>x</i> - <i>b</i>				
inversion occurs in $S_N 2$ reaction. (80) Compound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C \equiv CH_N = A \xrightarrow{B} CH_3 - C \equiv C - CH_2 - CH_2 + NaBr}$ (A) $A = CH_5 - C \equiv \overline{CNa^+}, B =$ $CH_5 - CH_2 - CH_2 - Br$ (B) $A = CH_3 - CH = CH_2, B =$ $CH_3 - CH_2 - CH_2 - Br$ (C) $A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH$ (D) $A = CH_3 - C \equiv \overline{CN} \xrightarrow{+}, B = CH_3 - CH_2 - CH_3$ (81) When phenyl magnesium bromide reacts with <i>t</i> butanol, the product would be (A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl (C) <i>x</i> - <i>b</i>	(D) Recemisation occurs in $S_{\rm M}$ reaction and			
(80) Compound A formed in the following reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C \equiv CH + Na \rightarrow A \xrightarrow{B} CH_3 - C \equiv C - CH_2 - CH_2 + NaBr}$ (A) $A = CH_5 - C \equiv \overline{CNa^+}, B = CH_3 - C \equiv CH_2 - CH_2 - Br$ (B) $A = CH_3 - CH = CH_2, B = CH_3 - CH_2 - CH_2 - Br$ (C) $A = CH_3 - CH_2 - CH_2 - Br$ (C) $A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH$ (D) $A = CH_3 - C \equiv \overline{CN} \stackrel{+}{+}, B = CH_3 - CH_2 - CH_3$ (81) When phenyl magnesium bromide reacts with <i>t</i> butanol, the product would be (A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl (C) <i>t</i> - butyl phenyl				
reaction reacts with <i>B</i> gives the product <i>C</i> . Find out <i>A</i> and <i>B</i> . $CH_3 - C \equiv CH + Na \rightarrow A \xrightarrow{B} CH_3 - C \equiv C - CH_2 - CH_2 + NaBr (C) \downarrow_{CH_3}(A) A = CH_5 - C \equiv \overline{CNa^+}, B = CH_3 - CH_2 - Br(B) A = CH_3 - CH = CH_2, B = CH_3 - CH_2 - CH_2 - Br(C) A = CH_3 - CH_2 - CH_2 - Br(C) A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH(D) A = CH_3 - C \equiv \overline{CN} \stackrel{+}{+}, B = CH_3 - CH_2 - CH_3(81) When phenyl magnesium bromide reactswith t butanol, the product would be(A) Benzene (B) Phenol(D) t - butyl phenyl(C) t - butyl phenyl$	(80) Compound A form	ned in the following		
hand out A find D. $CH_{3}-C \equiv CH + Na \rightarrow A \xrightarrow{B} CH_{3}-C \equiv C - CH_{2} - CH_{2} + NaBr}$ $(C) = CH_{5} - CH_{2} - CH_{2} - Br$ $(B) A = CH_{3} - CH = CH_{2}, B = CH_{3} - CH_{2} - Br$ $(B) A = CH_{3} - CH_{2} - CH_{2} - Br$ $(C) A = CH_{3} - CH_{2} - CH_{3}, B = CH_{3} - C \equiv CH$ $(D) A = CH_{3} - C \equiv \overline{CN} \xrightarrow{+}, B = CH_{3} - CH_{2} - CH_{3}$ $(B1) When phenyl magnesium bromide reacts with t butanol, the product would be (A) Benzene (B) Phenol (D) t- butyl phenyl$ $(D) t - buty$	reaction reacts wi	th B gives the product C .		
(A) $A = CH_5 - C \equiv \overline{CNa^+}, B = CH_5 - CH_2 - Br$ (B) $A = CH_3 - CH = CH_2, B = CH_3 - CH_2 - CH_2 - Br$ (C) $A = CH_3 - CH_2 - CH_3, B = CH_3 - C \equiv CH$ (D) $A = CH_3 - C \equiv \overline{CN} \stackrel{+}{+}, B = CH_3 - CH_2 - CH_3$ (81) When phenyl magnesium bromide reacts with <i>t</i> butanol, the product would be (A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl (C) $A = CH_5 - CH_2 - CH_3 - CH_2 - CH_3$ (B) $Phenol$ (C) $I = butyl phenyl$ (C) $I = butyl phenyl$		\xrightarrow{B} CH ₃ - C = C - CH ₂ - CH ₂ + NaB		
$\begin{array}{c} CH_{5} - CH_{2} - CH_{2} - Br\\ (B) A = CH_{3} - CH = CH_{2}, B = \\ CH_{3} - CH_{2} - CH_{2} - Br\\ (C) A = CH_{3} - CH_{2} - CH_{3}, B = CH_{3} - C \equiv CH\\ (D) A = CH_{3} - C \equiv \overline{CN} \stackrel{+}{+}, B = CH_{3} - CH_{2} - CH_{3}\\ (81) When phenyl magnesium bromide reacts with t butanol, the product would be (A) Benzene (B) Phenol (D) t - butyl phenyl (D) t - butyl (D) t - $				
$ \begin{array}{c} (B) \ A = CH_3 - CH = CH_2, \ B = \\ CH_3 - CH_2 - CH_2 - Br \\ (C) \ A = CH_3 - CH_2 - CH_3, \ B = CH_3 - C \equiv CH \\ (D) \ A = CH_3 - C \equiv \overline{CN} \stackrel{+}{+}, B = CH_3 - CH_2 - CH_3 \\ (81) \ When phenyl magnesium bromide reacts with t butanol, the product would be \\ (A) \ Benzene \\ (D) \ t - butyl phenyl \\ (D) \ t - butyl phenyl \\ \end{array} $	-			
$\begin{array}{c} CH_{3} - CH_{2} - CH_{2} - Br \\ (C) A = CH_{3} - CH_{2} - CH_{3}, B = CH_{3} - C \equiv CH \\ (D) A = CH_{3} - C \equiv \overline{CN} \stackrel{+}{+}, B = CH_{3} - CH_{2} - CH_{3} \\ (81) When phenyl magnesium bromide reacts with t butanol, the product would be \\ (A) Benzene \\ (D) t - butyl phenyl \\ (D) t - butyl phenyl \\ \end{array}$ $\begin{array}{c} (A) IV > III > II > I (B) III > I > II > IV \\ (C) II > III > I > IV (D) I > III > II > IV \\ (B9) C_{2}H_{5}Br \stackrel{AgCN}{\longrightarrow} X \stackrel{\text{Reduction}}{Z_{n-Hg/HCl}} Y, \text{ Here } Y \text{ is} \\ (A) Ethyl methyl \\ amine \\ (C) Isopropylamine \\ (D) t - butyl phenyl \\ \end{array}$		2		
(b) $A = CH_3 - C \equiv \overline{CN} \stackrel{+}{+}, B = CH_3 - CH_2 - CH_3$ (81) When phenyl magnesium bromide reacts with t butanol, the product would be (A) Benzene (B) Phenol (D) t- butyl phenyl (B) $t = butyl phenyl$ (B) $C_2H_5Br \xrightarrow{AgCN} X \xrightarrow{\text{Reduction}} Y$, Here Y is (A) Ethyl methyl (B) $n = propylamine$ (C) Isopropylamine (D) Ethylamine (90) A major component of Borsch reagent is abtained by reacting by draging		= /		
 (81) When phenyl magnesium bromide reacts with t butanol, the product would be (A) Benzene (B) Phenol (D) t- butyl phenyl (A) Ethyl methyl (B) n- propylamine (C) Isopropylamine (D) t- butyl phenyl 	$(C) A = CH_3 - CH_2$	$-CH_3, B = CH_3 - C \equiv CH$		
 (b) when phenyl magnesiam bromate reacts with t butanol, the product would be (A) Benzene (B) Phenol (C) Isopropylamine (D) t- butyl phenyl (C) A major component of Borsch reagent is obtained by reacting by draging by d	(D) $A = CH_3 - C \equiv 0$	$\overline{\mathrm{CN}}^{+}_{+}, \mathrm{B} = \mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{CH}_3$		
(A) Benzene (B) Phenol (D) <i>t</i> - butyl phenyl (C) Isopropylamine (D) Ethylamine (D) <i>t</i> - butyl phenyl	1 2 2	•		
(D) t – butyl phenyl (90) A major component of Borsch reagent is		-		
(D) i = budy plicity in the set of the	(A) Benzene			
			, , , , , , , , , , , , , , , , , , , ,	

(A) $E_b < E_f$ **(B)** $E_b > E_f$ (C) $E_b = E_f$ (D) There is no definite relation between E_b and E_f (98) The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation, $K = A.e^{-E^*/RT}$. Activation energy (E^*) of the reaction can be calculated by plotting (A) log k vs $\frac{1}{\log T}$ (B) k vs T (C) k vs $\frac{1}{\log T}$ (D) log k vs $\frac{1}{T}$ (99) The addition of a catalyst during a chemical reaction alters which of the following quantities? (B) Activation energy (A) Enthalpy (C) Entropy (D) Internal energy (100) The activation energy of a reaction can be determined from the slope of which of the following graphs ? (A) $\ln k$ vs. $\frac{1}{T}$ (B) $\frac{T}{\ln}$ vs. $\frac{1}{T}$ where (D) $\frac{\ln k}{T}$ vs. T (C) ln k vs. T


Biology - Se	ection A (мсq)	
101) A temporary endocrine gland formed after c	vulation in overvis	
(A) Corpus callosum (B) Corpus albicans	-	(D) Corpus uteri
102) The hormone glucagon		
(A) Has the opposite effect as that of insulin	(B) Is produced in the	e beta cells of pancreas
(C) Converts glucose into glycogen	(D) Is used in the trea	ntment of diabetes mellitus
103) Who formed NADPH2 ?		
(A) PS-I (B) PS-II (C) None – cyclic I	Photophosphorylation (D)) A & C both
104) The last or terminal cytochrome in respirato	ory chain is	
(A) $Cyt \ b$ (B) $Cyt \ a_3$	(C) Cyt a	(D) Cyt c
105) Gonadotrophic hormones are produced in th		
(A) Posterior part of thyroid	(B) Adrenal cortex	
(C) Adenohypophysis of pituitary	(D) Interstitial cells of	f testis
106) Match the following columns.		
$\begin{array}{ c c c }\hline Column-I & Column-II \\\hline A.F.W.went & 1.Kinetin \\\hline \end{array}$		
B.E.Kurosawa 2.Gibberellinacid		
C.SkoogandMiller $3.Auxin$		
$\begin{array}{ c c c }\hline D.Cousin & 4.Ethylene \\ \hline A-B-C-D & \end{array}$		
(A) $1-2-3-4$ (B) $3-2-1-4$	(C) $4 - 3 - 2 - 1$	(D) $3 - 2 - 4 - 1$
107) When 1 molecules of pyruvic acid passes thro		
of CO_2 are released and at <i>b</i> different sta		
a-b-c		
(A) $6 - 10 - 4$ (B) $5 - 3 - 2$		(D) $3-5-2$
108) Which hormone stimulates two organ to sec	•	
(A) Thyroxine (B) Gastrin	(C) Secretin	(D) Colycystokinin
109) Blood is formed of (A) Plasma and bone marrow cells	(B) Plasma and white	and red blood cells
(C) Plasma and white blood cells	(D) Plasma and red b	
110) In humans a duration of cardiac cycle is for.		
(A) 0.70 (B) 0.72	(C) 0.80	(D) 0.90
111) Systolic pressure in adult human is		
(A) $120 mm Hg$ (B) $120/80 mm Hg$	(C) 150/120 mm Hq	(D) 80 mm Hq
112) Choose correct option.		
Column -I Column -II		
Column -IColumn -II(p) Sponges(I) Through the	racheal tubes	
(p) Sponges(I) Through the(q) Insects(II) Through the	lungs	
Column -IColumn -II(p) Sponges(I) Through t(q) Insects(II) Through t(r) Molluscs(III) Vascular	lungs	re body surface

p-q-r-s
(A) I - III - IV - V
(B) IV - I - III - II
(C) II - III - IV - I
(D) I - II - III - IV

(113) Given below are two statements:

Statement *I*: The primary CO₂ acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells.
Statement *II*: Mesophyll cells of C₄ plants lack RuBisCo enzyme.
In the light of the above statements, choose the correct answer from the options given below:
(A) Both Statement *I* and Statement *II* are
(B) Statement *I* is correct but Statement *II* is

- (A) Both Statement 7 and Statement 77 are (B) Statement 7 is correct but Statement 77 is incorrect
- (C) Statement *I* is incorrect but Statement *II* is(D) Both Statement *I* and Statement *II* are correct
- (114) In the diagram of excretory system of human beings given below, different parts have been indicated by alphabets; choose the answer in which these alphabets have been correctly matched with the parts which they represent

- (A) *A* = Kidney, *B* = Abdominal aorta, *C* = Ureters, *D* = Urinary bladder, *E* = Urethra, *F* = Renal pelvis
- (B) *A* = Kidney, *B* = Abdominal aorta, *C* = Urethra, *D* = Urinary bladder, *E* = Ureters, *F* = Renal pelvis
- (C) *A* = Kidney, *B* = Renal pelvis, *C* = Urethra, *D* = Urinary bladder, *E* = Ureters, *F* = Abdominal aorta
- (D) A = Kidney, B = Abdominal aorta, C = Urethra, D = Urinary bladder, E = Renal pelvis, F = Ureters
- (115) The urine of a man is very dilute and the quantity of urine is too much and dehydration has started in his body and he is very thirsty by the cause of
 - (A) Hypersecretion of (B) Hyposecretion of (C) (a) and (b) both (D) None of the above ADH ADH
- (116) Glomerulus is formed by (A) Branch from renal vein (B) Branch from renal artery (D) Coiling of proximal part of uriniferous (C) Uriniferous tubule tubule (117) CO₂ binding capacity is higher in & who has higher binding capacity in RuBisCO (A) RuBisCO, CO₂ (B) RuBisCO, O₂ (C) PEPcase, CO₂ (D) PEPcase, O_2 (118) Which of the following two hormones have antagonistic effects (A) Parathormone and calcitonin (B) FSH and LH(C) Oestrogen and progesterone (D) *ADH* and melatonin (119) How many H_2O required for 6 NADPH₂ formation ? (A) 12 (B) 3 (C) 9 (D) None of these (120) In electron transport chain, which of following is a small and act as a mobile carrier for

electron transfer?	
(A) Cytochrome <i>A</i> (B) Cytochrome <i>a</i>	(C) Cytochrome a_3 (D) Cytochrome C
(121) Select the incorrect sentence for respiration.	
(A) Diffusion of gases across alveolar membra	ane
(B) Transport of gases by the tissue	
(C) Diffusion of O_2 and CO_2 between blood tis	201100
(D) Utilization of O_2 by the cells for catabolic	
(122) You are given a tissue with its potential for d	to the medium to secure shoots as well as roots?
(A) <i>IAA</i> and gibberelin	(B) Auxin and cytokinin
(C) Auxin and abscisic acid	(D) Gibberelin & abscisic acid
(123) The thoracic chamber is formed of	
(A) Ribs and sternum	(B) Ribs and vertebral column
	(D) Verterbral column, sternum, ribs and
(C) Sternum and Piapharm	diaphram.
(124) Match the following:	
Column -IColumn -II1. Cell bodyp. Transmit in	mpulses towords the cell body
	mpulses away from the cell body
	oplasm and granular bodies
s. Neurotrans	
(A) $(1-p)$, $(2-q)$, $(3-r)$ (B) $(1-p)$, $(2-q)$, $(3-r)$	s)(C) $(1-r), (2-p), (3-s)$ (D) $(1-r), (2-q), (3-p)$
(125) In ETS , electron combines to	
(A) Cytochrome (B) H_2	(C) O_2 (D) H_2O
(126) When a CO_2 molecule enters in Calvin cycle a	
of are required.	
(A) CO_2 , $NADPH$ (B) ATP , $NADPH$	(C) PGA, NAD (D) CO_2, NH_3
(127) How many <i>ATP</i> molecules can be produced and <i>3FADH</i> ₂ ?	through oxidative phosphorylation of $2NADH_2$
(A) 15 (B) 24	(C) 6 (D) 12
(128) In case the islets of Langerhans stop function	ning which hormone will be in short supply and
what will be its effect (A) Insulin-Blood glucose level will rise	(B) Adrenaline-Heart beat will increase
(C) Thyroxin-Growth will be retarded	(D) Cortine-Tetany will develop
(129) Asthma is a respiration disease concerned with	· ·
(A) Infection in alveolar wall	(B) Inflammation of brochi and brochioles
(C) Proliferation of fibrous tissue	(D) Infection in lungs
(130) Select the correct events that occur during in	C C
(a) Contraction of diaphragm	1
(b) Contraction of external inter-costal muscle	es
(c) Pulmonary volume decreases	
(d) Intra pulmonary pressure increases (A) only (d) (P) (c) and (b)	$(\mathbf{C}) (a) \text{ and } (d) \qquad (\mathbf{D}) (a) (b) \text{ and } (d)$
	$(\mathbf{C})(c) \text{ and } (a) \qquad (\mathbf{D})(a), (b) \text{ and } (a)$
(A) only (d) (B) (a) and (b) (131) Choose the correct pair	(C) (c) and (d) (D) (a), (b) and (d)

	Stages	ATP produc	ed through ETS	
	A. Glycolysis	1. 6		
	<i>B</i> . formation of Acetyl Co. <i>A</i> For Pyruvic acid	2. 3		
	C. Kreb's cycle	3. 11		
	$\overline{A - B - C}$			
	(A) $1 - 2 - 3$ (B) $2 - 1 - 3$			
	A pregnant female delivers a baby intelligence quotient and abnormal A) cancer of the thyroid gland			
	(C) deficiency of iodine in diet		(D) low secretion of gr	owth hormone.
	The total Lung Capacity (TLC) is th a forced inspiration. This includes		-	
(A) <i>RV</i> (Residual Volume); <i>ERV</i> (Ex (Inspiratory Reserve Volume)	piratory R	eserve Volume); TV (Ti	dal Volume); and <i>IRV</i>
((B) <i>RV</i> ; <i>IC</i> (Inspiratory Capacity); <i>E</i>	EC (Expira	tory Capacity); and <i>ER</i>	V
	(C) $RV; ERV; IC$ and EC			
(D) <i>RV</i> ; <i>ERV</i> ; <i>VC</i> (Vital Capacity) an	d FRC (Fi	inctional Residual Capa	city)
	Pancreas secretes		1	<i>.</i>
1 1	A) Digestive enzymes (B) Insulin		(C) Glucagon	(D) All the above
	What is the characteristic of metan A) Hypotonic urine production			furic acid
	(C) Loop of Henle		(D) Hormone producti	on
	A- The TCA cycle starts with the c yieldcitric acid R- Kreb's cycle occurs in cytoplasr		_	
((A) A and R both are correct.		(B) A and R both are i	ncorrect.
	(C) A is correct and R is incorrect.		(D) A is incorrect and	<i>R</i> is correct.
	Which one controls the secretion o	f estrogen	· ·	
((A) hCG (B) Progeste	ron	(C) <i>LH</i>	(D) <i>FSH</i>
1	Which of these statements is incom A) Glycolysis operates as long as it		l with NAD that can pio	ck up hydrogen atoms.
((B) Enzymes of <i>TCAcycle</i> are preser	nt in mitoc	hondrial matrix.	
	(C) Oxidative phosphorylation takes			mbrane.
	D) Glycolysis occurs in cytosoal	-		
(139)		blood cells	s formation. (B) Adrenaline hormo	ne
	(C) Noradrenaline hormone		(D) Thyroid hormone.	
	Identify X from figure.		. , ,	
	-			

Ser.			
(A) Portal circulat	tion (B) Posterior circula	tior(C) Hypothalamic neurons	(D) Anteater pituitary
(I) Hypothalamu (II) It regulates a	t option on the basis of foll is is the basal part of dienc a wide spectrum of body fu f hormones are produced l	ephalon inction	
	ins is hypothalamic hormo		
(A) Only <i>I</i>	, 1	(C) <i>I</i> , <i>II</i> and <i>III</i>	(D) I, II, III and IV
(142) Select the incorre		(0) 1,11 and 111	(D) 1,11,111 and 1,
	ones : Insulin, glucagon,	(B) Steroids : hypot	halamic hormone
(C) lodothynonine	es : Thyroid hormones	(D) Amino acid deri	vatives : Epinephrine
(143) A– The pituitary hypothalanus by	gland is located in bony c a stalk hysis consists of two portic	avity called sella tursic	a and is attached to ars intermedia
	nd R is incorrect.	(D) A is incorrect ar	
(144) A– Secretin acts juice respectively	on gall bladder and stimu y pancreas and stimulates t	lates the secretion of pa	ancreatic enzymes and bile atic enzymes.
(C) A is correct an	nd <i>R</i> is incorrect.	(D) A is incorrect ar	nd <i>R</i> is correct.
(145) Choose incorrect			
		rbohydrate metabolism	n are called glucocorticoids
(B) Corticoids, wh mineralocorti	nich regulate the water bal coids	ancing and electrolytes	s in our body are called
(C) Cortisol stimu	lates the <i>RBC</i> production		
	main mineralocorticoid		
(146) <i>A</i> – Thyroid glan the blood calciur	d secretes a protein hormo n levels percalcemic hormone	one called thyrocalciton (B) <i>A</i> and <i>R</i> both ar	
(C) A is correct and (147) Change in correct at		(D) A is incorrect ar	id R is correct.
(147) Choose incorrect		no accorded by the edge	nol modullo
	ts of androgenic steroids a	-	
-	t on the central neural syst		
(C) The estrogen	is synthesised and secreted	l mainly by the growin	g ovarian follicles
(D) Catecholamin	es stimulate the breakdow	n of lipids and proteins	3
(148) It simulates the d mediated immur	levelopment and different nity	iations, of <i>T</i> – lymphoc	ytes which provide cell

(A) Hormones of gland which locate side	d lateral	(B) Hormones of gland which located between both lungs	
(C) Hormones of gland which located in bony cavity		(D) Hormones produced from interstitial cells	
(149) Select the correct statement. (A) Insulin is associated with hyperg	glycemia.	(B) Glucocorticoids stimulate gluconeogenesis.	
(C) Glucagon is associated with hypoglycemia		(D) Insulin acts on pancreatic cells and . adipocytes.	
	0,	unction and the phytohormone involved.	
Column I	Column II		
(a) Fruit ripener		(i) Abscisic acid	
(b) Herbicide	(<i>ii</i>) 2, 4 - D		
(c) Bolting agent	(<i>iii</i>) <i>GA</i> ₃		
(d) Stress hormone	(<i>iv</i>) Ethepho	n	
Select the correct option from follow	-		
(A) $(a) - (iv), (b) - (ii), (c) - (i), (d) - (ii)$	(iii)	(B) $(a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)$	
(C) $(a) - (iii), (b) - (iv), (c) - (ii), (d) - (iii), (d) - (iiii), (d) - (iii), (d) - (iii), (d) - (iii), (d) - (iii), $	\cdot (i)	(D) $(a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)$	
(151) In tissue culture experiments, leaf This phenomenon may be called as		cells are put in a culture medium to form callus.	
(A) Senescence (B) Different	iation	(C) Dedifferentiation (D) Development	
(152) Auxin is used by gardeners to prepa	are weed-f	free lawns. But no damage is caused to grass as	
auxin (A) promotes abscission of mature le	eaves only	r.(B) does not affect mature monocotyledonous	
(C) can help in cell division in grasses, to produce growth.		plants. (D) promotes apical dominance.	
(153) Choose correct one.		· ·	
(A) In dicotyledonous and gymnospectrum (A)		lateral meristems, vascular cambium and cork	
(B) Growth is expressed as increase	in cell nui	mber and in size of the cell.	
-		anent increase in size of an organ its parts or	
(D) Cells in a watermelon may incre	ase in size	e unto 17 500 times	
(154) What are the characteristics of the		-	
<i>a.</i> Constantly dividing cells. <i>b.</i> Cell walls are primary in nature. <i>c.</i> New cell wall deposition. <i>d.</i> Increased vacuolation. <i>e.</i> Possess large conspicuous nuclei.		in in the root uper and shoot uper .	
$(A) a, b, c \qquad (B) a, b, d$		(C) c, d, e (D) a, b, e	
	e plants to	p produce flowers. Which combination of	
	flowering	g in pineapple plants throughout the year to	
(A) Auxin and Ethylene		(B) Gibberellin and Cytokinin	
(C) Gibberellin and Abscisic acid		(D) Cytokinin and Abscisic acid	
(156) Match the following (Condition for	growth)	· · · · · · · · · · · · · · · · · · ·	

Р	Q
1. Nutrients (Macro and Micro)	a. Medium for enzymatic activities
2. Oxygen	<i>b</i> . Synthesis of protoplasm and act as a source of energy
3. Water	<i>c</i> . Releasing metabolic energy for growth ac- tivities

(A)
$$1 - b, 2 - a, 3 - c$$
 (B) $1 - c, 2 - b, 3 - a$ (C) $1 - a, 2 - b, 3 - c$ (D) $1 - b, 2 - c, 3 - a$

(157) Which effects are of gibberellins ?

(a) It help overcome the apical dominance

- (b) Delay senescence, Thus the fruits can be left on the tree longer so as
- (c) Increase in length of axis
- (d) It is used to speed up the maltingprocess in brewing industries

(e) It induces parthenocarpy

(f) Promotes female flowers in cucumbers

(A) a, e, f (B) b, e, f (C) d, b, c (D) a, c, d

(158) Choose the incorrect statement.

(A) PGR has diverse physiological effects on plants.

(B) *PGR* may act synergically or antagonistically

(C) Two *PGR* can have same effect.

(D) *PGRs* are divided into three groups based on their functions in a living plant body.

(159) What is correct for emphysema ?

(A) Occurs due to only bacteria infection.

(B) One of the major causes is cigarette smoking.

(C) Peoples working in stone breaking industries are most affected.

(D) Inflammation of bronchi and bronchioles.

(160) What is false for inspiration process?

(A) Inspiration can occur if the pressure within the lungs (intra - pulmonary pressure) is less than the atmospheric pressure.

(B) There is a positive pressure in the lungs with respect to atmosphere.

(C) Intra pulmonary pressure is lower than atmospheric pressure.

(D) Inspiration is initiated by the contraction of diaphragm.

(161) Match the items given in Column *I* with those in Column *II* and select the correct option given below:

	Column I	Column II			
	(a)Tidal volume	$(i) \ 2500 - 3000 \ mL$			
	(b)Inspiratory Reserve volume	$(ii) \ 1100 - 1200 \ mL$			
	(c)Expiratory Reserve volume	(iii) 500 - 550 mL			
	(d) Residual volume	$(iv) \ 1000 - 1100 \ mL$			
($\overline{\mathbf{A}}$) $a - iv, b - iii, c - ii, d - i$	(B) $a - iii, b - i, c - iv, d$	— <i>ii</i>		
	(C) $a - i, b - iv, c - ii, d - iii$	(D) $a - iii, b - ii, c - i, d$	-iv		
	 (162) Tidal Volume and Expiratory Reserve Volume of an athlete is 500 mL and 1000 mL respectively. What will be his Expiratory Capacity if the Residual Volume is 1200 mL?mL (A) 1500 (B) 1700 (C) 2200 (D) 2700 				
(163)	Identify the wrong statement with	reference to transport of oxygen.			
	(A) Low pCO_2 in alveoli favours the				
	-	<i>, , ,</i>	raccura of O		
	(B) Binding of oxygen with haemog				
	(C) Partial pressure of CO_2 can integrate CO_2	rfere with O_2 binding with haemo	globin.		
((D) Higher H^+ conc. in alveoli favou	urs the formation of oxyhaemoglo	bin.		
(164)	Match the following columns and s	elect the correct option			
	Column I	Column II			
	(a) Pneumotaxic Centre	(i) Alveoli			
	(b) O ₂ Dissociation curve	(<i>ii</i>) Pons region of brain			
	(c) Carbonic Anhydrase	(iii Haemoglobin			
	(d) Primary site of exchange of gases	(<i>iv</i>) <i>R.B.C.</i>			
($(\mathbf{A})(a) - (iv), (b) - (i), (c) - (iii), (d) - (iiii), (d) - (iii), (d) - (iii), (d) - (iii),$	(<i>ii</i>) (B) $(a) - (i), (b) - (iii), (b) - (iii)$	\overrightarrow{c} - (<i>ii</i>), (<i>d</i>) - (<i>iv</i>)		
	(C) $(a) - (ii), (b) - (iii), (c) - (iv), (d) - (iv), (d)$	- (i) (D) $(a) - (iii), (b) - (ii),$	(c) - (iv), (d) - (i)		
(165)	(165) Identify the step in tricarboxylic acid cycle, which does not involve oxidation of substrate.				
((A) Succinic acid $ ightarrow$ Malic acid	(B) Succinyl- $CoA ightarrow$ Su	ccinic acid		
	(C) Isocitrate $\rightarrow \alpha$ -ketoglutaric acid (D) Malic acid \rightarrow Oxaloacetic acid				
 (166) Choose correct sentences for glycolysis. (1) Glycolysis occurs in the cytoplasm of the cell. (2) During this one molecule of glucose is converted into two molecules of pyruvic acid. 					
	(3) O_2 is not used in this phase. (4) This phase is known as TCA .	(\mathbf{c}) 1 a a			
	(A) 2, 3, 4 (B) 1, 2, 4	(C) 1,2,3	(D) 1,3,4		
	 (167) In 5 Krebs cycle α – Kitoglutaric acid is converted into malic acid during this phase how many NADH, FADH2 and ATP are formed? (A) 2 NADH, 1 FADH2, 1 ATP (B) 1 NADH, 1 FADH2, ATP 				
	(C) $5 NADH, 5 FADH_2, 5 ATP$	(D) 3 <i>NADH</i> , 1 <i>FADH</i> ,	3 ATP		
	GSB & PSB do	, , ,			
	(A) Oxigenic photosynthesis	(B) Anoxigenic Photosyn	thesis		
	(C) Chemosynthetic	(D) Both B & C			
	()	(-, 2000 2 02 0			

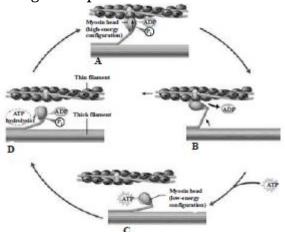
synthesis of ATP from ADP .	ane protein complex and contains the site for		
(A) A and R both are correct.	(B) A and R both are incorrect.		
 (C) A is correct and R is incorrect. (170) Number of ATP molecules synthesized throu respiration of 3 pyruvic acids molecules are 	(D) A is incorrect and R is correct. ugh oxidative phosphorylation during aerobic		
(A) 56 (B) 42	(C) 102 (D) 108		
(171) Which of the following is not correct for C_4 –(A) They have kranz anatomy in their leaves.	-		
(B) Primary CO ₂ acceptor is phosphoenol pyr	uvate		
(C) Bundle sheet cells are rich in an enzyme	PEP case but lack RuBisco		
(D) Malic acid or aspartic acid is formed in m			
(172) $I-$ It is the characteristic of C_4- plants $II-$ It is the characteristic of C_3- plants III- It occurs in chloroplast IV- It occurs in day time V- It occurs in night Select the correct option in relation, to photo Correct Sentences – Incorrect Sentences (A) $(I, IV) - (II, III, V)$ (B) $(II, III, IV) - (I, V)$	prespiration (I, II, III) - (IV, V) (D) $(IV, V) - (I, II, III)$		
(173) $A-$ In the photo respiratory pathway there is $R-$ In C_4 plants photorespiration dose note of (A) A and R both are correct.			
(C) A is correct, R is incorrect.	(D) A is incorrect, R is correct.		
 (174) C₄ pathway is advantageous over C₃ pathway (A) Occurs in relatively low co₂ concentration 			
(C) Occurs in relatively low O_2 concentration	(D) Is less efficient in energy utilisation		
(175)How many cyclic & Non – cyclic photophosph formation ?	orylation required for 1 sucrose molecule		
(A) 6 Cyclic & 6 Non – cyclic	(B) 12 Cyclic & 6 Non – cyclic		
(C) 12 Cyclic & 12 Non – cyclic	(D) 6 Cyclic & 12 Non – cyclic		
(176) In some of the nephrons, the loop of henle is nephrons are called	very long and runs deep into the medulla. These		
(A) Malpighian tubules (B) Cortical nephrons	(C) Juyxta medullary (D) Vasa recta nephrons		
(177) cells of Bowman's capsule called leave some minute spaces called slit pores.(A) Endothelium, podocytes	(B) Epithelium, podocytes		
(C) Basement membrane, <i>JGA</i> – cells	(D) Epithelium <i>JGA</i> – cells		
(178) An adult, human excretes, on average, urea is excreted out per day.	-		
(A) $1 - 15 liter, 30 - 25 gm$	(B) $1 - 5 liter, 25 - 30 gm$		
(C) $1 - 1.5 liter, 25 - 30 gm$	(D) $1 - 1.5 liter, 20 - 25 gm$		
(179) The increase in osmolarity from outer to inner medullary interstitium is maintained due to : (i) Close proximity between Henle's loop and vasa recta (ii) Counter current mechanism			

(<i>iii</i>) Selective secretion of HCO_3^- and hydrogen ions in PCT				
(<i>iv</i>) Higher blood pressure in glomerular ca				
(A) (<i>i</i>) and (<i>ii</i>) (B) Only (<i>ii</i>)	(C) (iii) and (iv)	(D) $(i), (ii)$ and (iii)		
(180) Select the correct statement				
(A) Reduction in Glomerular Filtration Rate activates JG cells to release renin.				
(B) Atrial Natriuretic Factor increases the blo	ood pressure.			
(C) Angiotensin <i>II</i> is a powerful vasodilator.				
(D) Counter current pattern of blood flow is a	not observed in vasa rec	cta.		
 (181) Which of the following statements are correct? A. An excessive loss of body fluid from the body switches off osmoreceptors. B. ADH facilitates water reabsorption to prevent diuresis. C. ANF causes vasodilation. D. ADH causes increase in blood pressure. E. ADH is responsible for decrease in <i>GFR</i>. Choose the correct answer from the options given below: 				
(A) C, D and E only (B) A and B only	0	(D) A, B and E only		
(182) is absent or highly reduced in cortica	al nephrons			
(A) Henle's loop. (B) Vasa recta	(C) Collecting duct	(D) <i>PCT</i>		
(183) Uremia is the occurrence of				
(A) Blood in urine	(B) Excess of urea in I			
(C) Excess of sugar in blood	(D) Deficiency of suga			
 (184) A- Malfunctioning of kidneys can lead to accumulation of urea in blood, a condition called ureamia. R- Blood drained from a convenient artery is pumped into dialyzing unit after adding anti heparin. 				
(A) Both A and R are (B) Both A and R are true false	(C) A is false, R is tru	e (D) A is true, R is false		
 (185) Choose incorrect sentence. (I) Malpighian corpuscles, <i>PCT</i> and <i>DCT</i> the nephron are situated in medulla of the kidney (<i>II</i>) The loop of henle dips into medulla. (<i>III</i>) In juxta medullary nephrons, the loop of henle is too short and extends very little into the medulla. 				
(<i>IV</i>) Vasa recta is absent or highly reduced i (A) <i>I</i> , <i>II</i> (B) <i>II</i> , <i>IV</i>	(C) <i>I</i> , <i>III</i>	(D) <i>III</i> , <i>IV</i>		
(186) Mechanism of uric acid excretion in a neph	,	(D) 111,1V		
(A) Osmosis (B) Diffusion	(C) Secretion	(D) Ultrafiltration		
(187) In micturition				
(A) Urethra relaxes (B) Ureter contracts	(C) Ureter relaxes	(D) Urethra contracts		
(188) Which is mismatched (A) Bowman's capsule - Glomerular filteration (B) PCT -Absorption of Na^+ and K^+				
(C) DCT -Absorption of glucose	(D) None of these			
(189) Which is true statements ?				
(A) The skull region articulates with the superior region of the vertebral column with the help of two occipital condyles.				
(B) Number of thoracic vertebra are 7.				
(C) Palatine bone has seen from outer surface.				
(D) Lacrimal had not seen from outer layer.				
(190) Given characters are showed in — They are located in the inner wall of alim	entary canal.			

– They do not show any striation.

– They are non-striated and spindle shaped.

- They are involuntary and innervated by autonomous nervous system


(A) Skeletal muscles (B) Cardiac muscles (C) Voluntary muscles (D) Visceral muscles

(191) A- Actin filaments occurs in two forms, the polymeric 'G' actin and monomer F- actin. R- Tropomyosin is a rod - shaped fibrous protein. Tropomyosin forms two helical strands, which are wrapped around the G- actin.

(A) A and R both are correct.

- (B) A and R both are incorrect.
- (C) *A* is correct and *R* is incorrect.
- (D) A is incorrect and R is correct.

(192) The given figure represents the cross bridge cycle in skeletal muscle. What does the step *B* in the figure represents ?

- (A) Attachment of myosin head to actin forming cross bridge.
- (B) Release of phosphate. Myosin changes shape to pull actin
- (C) Attachment of new *ATP* to myosin head. The cross bridge detaches
- (D) Splitting of *ATP* into *ADP* and *Pi*. Myosin cocks into its high energy conformation.

(193) An acromian process is characteristically found in the

(A) pelvic girdle of human
(B) pectoral girdle of human
(C) skull of frog
(D) sperm of mammals
(194) Stimulation of a muscle fiber by a motor neuron occurs at:
(A) the neuromuscular junction
(B) the transverse tubules
(C) the myofibril
(D) the sacroplasmic reticulum
(195) form the hard protective outer covering for the brain
(A) Cranial bones and facial bones
(B) Only cranial bones
(D) Hyoid bone

- (196) Macrophasges and leucocytes exhibit
- (A) Cilliary movement (B) Flagellar movement(C) Amoeboid (D) Gliding movement
- (197) Delete odd one (interm of relationship)

(A) Scapula (B) Humerus (C) Radius, ulna (D) lleum

- (198) Which sentence is not true for muscle contraction ?
 - (A) During stimulation when muscle contract, the length of filaments (thin and thick) does not change but merely slide over one another.
 - (B) During stimulation Z- line two of sarcomere comes close to each other.
 - (C) On stimulation there is no any change in light band.

(D) All of the above

(199) Read the following statements carefully and select the correct option.

I. The medulla is connected to the spinal cord.

II. Medulla contains controlling centers for respiration, cardiovascular reflexes and gastric secretion.

III. Cerebellum has very convoluted surface in order to provide the additional space for more neurons.

(A) Only *I* (B) Only *I* and *III* (C) Only *III* (D) *I*, *II*, *III*

(200) Resting membrane potential is maintained by

(A) Hormone (B) Neurotransmitter (C) lon pumps (D) None of these