

(A) Force is required	to keep it in rest state			
(B) No force is acting on it				
(C) A large number of	of forces may be acting o	n it which balance each	n other	
(D) It is in vacuum				
(19) The average force no penetrates into the v	ecessary to stop a bullet wood for a distance of 12	of mass 20 g moving with cm is	th a speed of $250 m/s$, as it	
(A) $2.2 \times 10^3 N$	(B) $3.2 \times 10^3 N$	(C) $4.2 \times 10^3 N$	(D) $5.2 \times 10^3 N$	
(20) A body, under the ad mass of this body m	ction of a force $ec{F}=6\hat{i}-8$ ust be	$8\hat{j}+10\hat{k}$, acquires an ac	celeration of $1 m/s^2$ The	
(A) 15 kg	(B) 20 kg	(C) $10\sqrt{2} kg$	(D) $2\sqrt{10} kg$	
(21) A machine gun is mo the gun fires bullets number of bullets fi	ounted on a $2000 kg$ car o of mass $10 gm$ with a vel red per second is ten. Th	n a horizontal friction ocity of $500 m/sec$ with the average thrust on the	ess surface. At some instant respect to the car. The e system is <i>N</i>	
(A) 550	(B) 50	(C) 250	(D) 25	
(22) In a rocket of mass 1 ejected from the roc	1000 kg fuel is consumed ket is $5 \times 10^4 m/s$. The th	at a rate of $40 kg/s$. The rust on the rocket is	velocity of the gases	
(A) $2 \times 10^3 N$	(B) $5 \times 10^4 N$	(C) $2 \times 10^6 N$	(D) $2 \times 10^9 N$	
(23) Sand is being dropp keep the belt moving	ed on a conveyer belt at g with a constant speed o	the rate of $2 kg$ per second $3 ms^{-1}$ will be	and . The force necessary to N	
(A) 12	(B) 6	(C) 0	(D) 18	
(24) A rigid ball of mass shown in the figure.	<i>m</i> strikes a rigid wall at (. The value of impulse in	60° and gets reflected want on the second se	ithout loss of speed as the ball will be	
(A) $\frac{mv}{2}$	(B) $\frac{mv}{3}$	(C) <i>mv</i>	(D) 2mv	
(25) A rope of length L is x from the end when	s pulled by a constant for re the force is applied	cce F. What is the tensi	on in the rope at a distance	
(A) $\frac{FL}{x}$	(B) $\frac{F(L-x)}{I}$	(C) $\frac{FL}{L-x}$	(D) $\frac{Fx}{L-x}$	
(26) A body of weight 2 k string (in kg wt) is	g is suspended as shown	in the figure. The tens	ion T_1 in the horizontal	
(A) $2/\sqrt{3}$	(B) $\sqrt{3}/2$	(C) $2\sqrt{3}$	(D) 2	
(27) Three equal weights frictionless pulley as is N	A, B and C of mass $2 kgs shown in the figure The$	each are hanging on a e tension in the string c	string passing over a fixed onnecting weights <i>B</i> and <i>C</i>	

..... **Chemistry - Section A** (мсq) Which expression of rate of reaction is correct for a reaction $H_2 + I_2 \rightleftharpoons 2HI$? (51)(B) $-\frac{d[H_2]}{2dt} = -\frac{d[I_2]}{2dt} = +\frac{d[HI]}{4dt}$ (A) $-\frac{2d[H_2]}{dt} = -\frac{2d[I_2]}{dt} = +\frac{d[HI]}{dt}$ (C) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = +\frac{d[HI]}{dt}$ (D) $-\frac{d[H_2]}{2dt} = -\frac{d[I_2]}{2dt} = +\frac{d[HI]}{dt}$ (52) The balanced equation for a reaction having rate of reaction $+\frac{1}{3}\frac{d[Br_2]}{dt} = -\frac{d[BrO_3]}{dt} = -\frac{1}{5}\frac{d[Br^-]}{dt} = -\frac{1}{5}\frac{d[H^+]}{dt}$ is (A) $\operatorname{Br}_{2(aq)} + \operatorname{BrO}_{3(aq)} \rightarrow 5\operatorname{Br}_{(aq)} + 6\operatorname{H}_{(aq)}^+$ (B) $\operatorname{BrO}_{3(aq)}^{-} + 5\operatorname{Br}_{(aq)}^{-} + 6\operatorname{H}_{(aq)}^{+} \rightarrow 3\operatorname{Br}_{2(aq)}^{-} + 3\operatorname{H}_{2}\operatorname{O}_{(1)}^{-}$ (C) $3Br_{2(aq)} \rightarrow BrO_{3(aq)}^{-} + 5Br_{(aq)}^{-} + 6H_{(aq)}^{+}$ (D) $BrO_{3(aq)}^{-} + 5Br_{(aq)}^{-} + 6H_{(aq)}^{+} \rightarrow 3Br_{2(aq)}^{-}$ (53)Which of the following statement is wrong for $4A + B \rightarrow 2C + 2D$? (A) rate of production of C and D is same. (B) rate of production of C is half than rate of consumption of A. (C) rate of production of C is half than rate of consumption of B. (D) The rate of consumption of B is one-fourth the rate of consumption of A. The rate of production of D in 2A + B \rightarrow 2C + 4D is 1.6 \times 10⁻³ Ms⁻¹. Which of the following (54)statement is true for this reaction ? (A) $-\frac{d[B]}{dt} = 3.2 \times 10^{-3} \text{ Ms}^{-1}$ (B) $-\frac{d[A]}{dt} = 6.4 \times 10^{-3} \,\mathrm{Ms}^{-1}$ (D) $-\frac{1}{2} \frac{d[A]}{dt} = 1.6 \times 10^{-3} \text{ Ms}^{-1}$ (C) $\frac{d[C]}{dt} = 8.0 \times 10^{-4} \text{ Ms}^{-1}$ For a reaction : $2N_2O_5 \rightarrow 4NO_2 + O_2$ the rate law can be presented in three different ways as (55)follows, then which relation between K and K' and K and K "holds ? $\frac{-d[N_2O_5]}{dt} = K[N_2O_5] \qquad \frac{d[NO_2]}{dt} = K'[N_2O_5] \qquad \frac{d[O_2]}{dt} = K''[N_2O_5]$ (A) K'= 2K, K" = $\frac{K}{2}$ (B) K' = 2K. K'' = K(C) K' = K, K'' = K(D) K' = 2K. K'' = 2KIn a reaction : $BrO_{3(aq)}^{-} + 5Br_{(aq)}^{-} + 6H_{(aq)}^{+} \rightarrow 3Br_{2(l)} + 3H_2O_{(l)}$ the rate of consumption of Br⁻ is (56) $1.5 \times 10^{-2} \,\mathrm{Ms^{-1}}$. The rate of consumption of H⁺ and rate of production of Br₂ will be respectively (A) $(5 \times 6) \ 1.5 \times 10^{-2}$, $(3 \times 6) \ 1.5 \times 10^{-2}$ (B) $\left(\frac{6}{5}\right) \ 1.5 \times 10^{-2}$, $\left(\frac{3}{5}\right) \ 1.5 \times 10^{-2}$ (C) $\left(\frac{5}{6}\right) 1.5 \times 10^{-2}, \left(\frac{5}{3}\right) \times 1.5 \times 10^{-2}$ (D) $(5 + 6) 1.5 \times 10^{-2}$, $(3 + 6) 1.5 \times 10^{-2}$

(57)	The change in concentration of hydrogen in a reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$ is $-0.3 \times 10^{-4} \text{ Ms}^{-1}$. The change in concentration of ammonia at that time is
	(A) 0.2×10^{-4} (B) -0.2×10^{-4} (C) 0.1×10^{-4} (D) 0.3×10^{-4}
(58)	The pressure of N_2O_4 in a reaction $N_2O_{4(g)} \rightarrow 2NO_{2(g)}$ reduces from 0.5 atm to 0.32 atm in 30 minutes. Find rate of production of NO_2 .
	(A) 0.012 atm min ⁻¹ (B) 0.024 atm min ⁻¹ (C) 0.006 atm min ⁻¹ (D) 0.003 atm min ⁻¹
(59)	In a reaction : A + 2B \rightarrow C, at a time t ₁ , $-\frac{d[A]}{dt} = 2.6 \times 10^{-2} \text{ M sec}^{-1}$, then at a time t ₁ , $-\frac{d[B]}{dt} = 2.6 \times 10^{-2} \text{ M sec}^{-1}$
	(A) 2.6×10^{-2} (B) 5.2×10^{-2} (C) 1.0×10^{-1} (D) 6.5×10^{-3}
(60)	In a reaction $H^+ + OH^- \rightarrow H_2O$, the time required for a decrease of 0.02 M in concentration of H^+ ions is 2 nano second. What will be the average rate of reaction ?
	(A) 2 Ms ⁻¹ (B) 1×10^7 Ms ⁻¹ (C) 0.02 Ms ⁻¹ (D) 0.02×10^9 Ms ⁻¹
(61)	Which of the following is not an example of redox reaction ? (A) $CuO + H_2 \longrightarrow Cu + H_2O$ (B) $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$ (C) $2K + F_2 \longrightarrow 2KF$ (D) $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCl$
(62)	Thiosulphate reacts differently with iodine and bromine in the reactions given below : $2S_2O_3^{2^-} + I_2 \rightarrow S_4O_6^{2^-} + 2I^-$ $S_2O_3^{2^-} + 2Br_2 + 5H_2O \rightarrow 2SO_4^{2^-} + 2Br^- + 10 H^+$ Which of the following statements justifies the above dual behaviour of thiosulphate ? (A) Bromine is a stronger oxidant than iodine (B) Bromine is a weaker oxidant than iodine. (C) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions. (D) Bromine undergoes oxidation and iodine undergoes reduction in these reactions
(63)	 (b) Bromme undergoes oxidation and rounce undergoes reduction in these reactions. The oxidation number of an element in a compound is evaluated on the basis of certain rules. Which of the following rules is not correct in this respect ? (A) The oxidation number of hydrogen is always +1. (B) The algebraic sum of all the oxidation numbers in a compound is zero. (C) An element in the free or the uncombined state bears oxidation number zero. (D) In all its compounds, the oxidation number of fluorine is -1.
(64)	In which of the following compounds, an element exhibits two different oxidation states.
(65)	(A) NH ₂ OH (B) NH ₄ NO ₃ (C) N ₂ H ₄ (D) N ₃ H Which of the following arrangements represent increasing oxidation number of the central atom ? (A) CrO_2^- , ClO_3^- , CrO_4^{2-} , MnO_4^- , CrO_2^- (B) ClO_3^- , CrO_4^{2-} , MnO_4^- , CrO_2^- (C) CrO_2^- , ClO_3^- , MnO_4^- , CrO_4^{2-} (D) CrO_4^{2-} , MnO_4^- , CrO_2^{2-}

(93) Identify the major products *A* and *B* respectively in the following reactions of phenol. OH

(94) Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). Assertion (A): Synthesis of ethyl phenyl ether may be achieved by Williamson synthesis. Reason (R): Reaction of bromobenzene with sodium ethoxide yields ethyl phenyl ether.

In the light of the above statements, choose the most appropriate answer from the options given below:

(A) Both (A) and (R) are correct and (R) is the correct explanation of (A)

- (B) (A) is correct but (R) is not correct
- (C) (A) is not correct but (R) is correct
- (D) Both (A) and (R) are correct but (R) is NOT the correct explanation of (A)
- (95) Match List *I* with List *II*.

Choose the correct answer from the options given below

(D) Both A and R are false.

Biology Section – A				
(101) Identify A and B respectively.				
A				
В				
2 × 2-phosphoglycerate				
2 × phosphoenolpyruvate				
2 × Pyruvic acid (3C)				
(A) Fructose 1 – 6 bi phosphate, oxalo aceta	ate (B) 1,3– bi phospho 6–phosphate	glyceric acid fructose		
(C) $2 \times 1, 3$ biphosphoglyceric acid, $2 \times 3 - 1$	PGA(D) Acetaldehyde, gl	lucose 1,6 biophosphate.		
(102) Phototropic curvature is the result of unex	ven 'Auxin' term is appli	ed to the		
(A) IBA (B) C_2H_4	(C) ABA	(D) <i>GA</i> ₃		
(103) Photorespiration is a characteristic of whi	ch plant?			
(A) C_4 (B) C_3	(C) CAM	(D) All above		
(104) Foolish seedling disease of rice led to the d	liscovery of			
(A) ABA (B) $2, 4 - D$	(C) IAA	(D) <i>GA</i>		
(105) What is the net gain of ATP when each mo pyruvic acid ?	lecule of glucose is conv	verted to two molecules of		
(A) Six (B) Two	(C) Eight	(D) Four		
(106) How many CO_2 are released during the 10	molecule of glucose at t	the aerobic respiration ?		
(A) 10 (B) 60	(C) 30	(D) 120		
(107) Abscission and dormancy are caused by				
$(A) ABA \qquad (B) NAA$	(C) <i>IAA</i>	(D) <i>IBA</i>		
(108) Plant growth is unique because(A) Plant retains the capacity for unlimited growth throughout their life.	(B) Plant retains the growth.	capacity for limited		
(C) Plants have less growth that differs from	n (D) Plants growth is	seen only in juyenile nhase		
(109) Which sentence is given by Julius Von Sach	ns ?	seen only in juvenine phase.		
(A) He proved that air is required for plant	growth.			
(B) He proved that in bright sunlight, small bubbles were formed around the green parts in aquatic plants.				
(C) He found that the green parts in plants is where glucose is made and that the glucose is usually stored as starch.				
(D) It represents that O_2 released from H_2O not from CO_2				
(110) Photo synthesis is	-			
(A) Physico-Chemical process	(B) Chemical proces	S		
(C) Physical process	(D) Catalvlic process			
(,, , , , , , , , , , , , , , , , , , ,	<_ , F			

(111) When growth is even	nnlified by a root elong	ation at a constant rate	Mathematically, it is
expressed as	apinica by a root clonge		. Muthematically, it is
(A) $rt = L_1 + L_0$	(B) $W_1 = W_0.e^{rt}$	(C) $Lt = L_0 + rt$	(D) $W_0 = W_1 \cdot E^{rt}$
(112) Which hormone was	first isolated from hum	an urine ?	
(A) Auxin	(B) <i>ABA</i>	(C) Ethylene	(D) Gibberellic acid
(113) Match the following	columns.		
Column - I $Column - I$	olumn – II		
A.Naturalauxin 1. B.Suntheticauxin 2	I AA N A A		
3	IBA		
4.5	2 - 4 - D		
$\begin{array}{c} A - B \\ (A) 1 2 2 \end{array}$	(\mathbf{D}) 2 4 1 0	(C) 1 2 0 4	$(\mathbf{D}) \circ 4 = 1 \circ 2$
(A) $1, 2 - 3, 4$ (114) Mubich officiate and of	(B) $3, 4 - 1, 2$	(C) $1, 3 - 2, 4$	(D) $2, 4 - 1, 3$
(114) Which effects are of (a) It help overcome	the apical dominance		
(b) Delay senescence,	Thus the fruits can be l	left on the tree longer s	o as
(c) Increase in length	of axis	·	
(d) It is used to speed	l up the maitingprocess	in brewing industries	
(f) Promotes female	flowers in cucumbers		
(A) <i>a</i> , <i>e</i> , <i>f</i>	(B) <i>b</i> , <i>e</i> , <i>f</i>	(C) d, b, c	(D) <i>a</i> , <i>c</i> , <i>d</i>
(115) Choose incorrect sen (A) Natural cytokining	tence. s are synthesized in regi	ons where rapid cell di	vision occurs.
(B) Kinetin is a modif	ied form of adenine, pu	rine.	
(C) Cytokinins induce	parthenocarpy e.g. into	omatoes	
(D) Cytokinins promo	te nutrient mobilization	which helps in the dela	av of leaf senescence.
(11c) In photosynthesis pro	ocess which molecule ac	t as reaction center?	.,
(116) (A) Xanthophyll	(B) Chlorophyll $-b$	(C) Carotenoid	(D) Chlorophyll $-a$
(117) Respiration is an	·····	(C) 4 and D hath	(D) None of the choice
(A) Endergonic proces	ss(B) Exergonic process	(C) A and B both	(D) None of the above
(118) Which of the followin	(B) Kinetin	(C) Zeatin	(D) Yeast extract
The final structure at	t maturity of a cell/tissue	e is	(D) Toubt entruct
(A) Type of cells		(B) Type of cell division	on
(C) Location of cell w	ithin tissue	(D) Nutrient in cells	
(119) Choose odd one.			
(A) Malic acid	(B) <i>PEP</i>	(C) Fumaric acid	(D) Citric acid
(120) Which of these stater	ments is incorrect?		
(A) Glycolysis operate	es as long as it is supplied	d with <i>NAD</i> that can pi	ck up hydrogen atoms.
(B) Enzymes of <i>TCAc</i>	<i>ycle</i> are present in mitod	chondrial matrix.	
(C) Oxidative phospho	orylation takes place in	outer mitochondrial me	embrane.
(D) Glycolysis occurs	in cytosoal		
(121) Dwarfness can be con (A) Cytokinin	ntrolled by treating the j (B) 'Gibberellic acid	plant with (C) Auxin	(D) Ethylene
(122) For the observation o	f Kranz anatomy which	plant is useful?	-
(A) Maize and cycas	(B) Cycas and pinus	(C) Maize and sugarcane	(D) Sugarcane and pinus.

(123) Identify A and B in the	e given figure and choo	se the correct option.	
(A) A- Root apical mer	istem; <i>B</i> – Shoot apical	(B) <i>A</i> – Shoot apical m	eristem; <i>B</i> – Root apical
(C) A Seed cost: B P	Padiela tissua	(D) A Padical tissue:	R Poot
(124) ABA acts as an antago	nist to	(D) A – Radical tissue,	
(A) Inhibitor $-B$	(B) Zeatin	(C) Auxin	(D) <i>GAs</i>
(125) $A - ATP$ ase is a multie R - The F_1 headpiece is synthesis of ATP from	enzyme complex contai s a peripheral membra n <i>ADP</i> .	ning two parts F_0 and	F_1 d contains the site for
(A) A and R both are c	orrect.	(B) A and R both are	incorrect.
(C) A is correct and R i	s incorrect.	(D) A is incorrect and	R is correct.
(126) Seed dormancy is due	to the		
(A) Ethylene	(B) Abscisic acid	(C) IAA	(D) Starch
(127) It is used to initiate flo	owering and for synchro	onizing fruit-set in pine	eapples.
(A) ABA	(B) Ethylene	(C) Kinetin	(D) Gibberellin
(128) Choose correct senten (1) Glycolysis occurs in (2) During this one mo (3) O_2 is not used in th (4) This phase is know	ces for glycolysis. n the cytoplasm of the c olecule of glucose is con is phase. m as TCA.	ell. verted into two molecu	lles of pyruvic acid.
(A) 2, 3, 4	(B) 1, 2, 4	(C) 1, 2, 3	(D) 1, 3, 4
(129) Which was discovered	l first ?		
(A) GA_1	(B) <i>GA</i> ₂	(C) GA_3	(D) GA_4
 (130) How many molecules Calvin cycle? (A) 2 molecules of ATP and 2 molecules of NADPH 	of <i>ATP</i> and <i>NADPH</i> and <i>CADPH</i>	e required for every m P(C) 3 molecules of AT and 2 molecules of NADPH	P(D) 2 molecules of ATP f and 3 molecules of NADPH
(131) RQ of Tripalmitin is			
(A) 0.7	(B) 0.9	(C) 1	(D) 0
 (132) Plants followA p kind of structures. The combination of option (A) A- same; B- elastic 	bathways in response to is ability is calledB s. icity	environment or phase Complete the given (B) <i>A</i> – elasticity; <i>B</i> – s	es of life to form different statement with the correct same
(C) A– different; B– p	lasticity	(D) A- same; B- plas	ticity
(133) Oxidative phosphoryla	ation is		
(A) formation of ATP k	by transfer of phosphate	e group from a substra	te to ADP
(B) oxidation of phospl	nate group in <i>ATP</i>		
(C) addition of phosph	ate group to <i>ATP</i>		

(D) formation of *ATP* by energy released from electrons removed during substrate oxidation.

 (134) A- The C₃ and C₄ plants respond differently to CO₂ concentrations. R- The concentration of CO₂ is between 0.03 and 0.04 percent. Increase in concentration 0.005 percent can cause an increase in CO₂ fixation rates. (A) A and R both are correct. (B) A and R both are incorrect. 			
(C) A is correct and R is incorrect.	(D) A is incorrect and	<i>R</i> is correct.	
(135) What amount of energy is released from gluo	cose during lactic acid	fermentation?	
(A) More than 18% (B) About 10%	(C) Less than 7%	(D) Approximately 15%	
Biolog	zy Section - B		
(136) <i>I</i> . The increased growth per unit time is term <i>II</i> . Abscisic acid <i>B</i> the stomata. Choose the correct option and fill in the blan	hedasA		
(A) $A - Plasticity, B - Close$	(B) $A-$ Growth rate, A	B– open	
(C) A - Plasticity, B - open	(D) $A-$ Growth rate ,	<i>B</i> – close	
(137) The process of growth is maximum during			
(A) Dormancy (B) Log phase	(C) Lag phase	(D) Senescence	
(138) Which hormone promotes internode/petiole e	longation in deep wate	r rice?	
(A) $2, 4 - D$ (B) GA_3	(C) Kinetin	(D) Ethylene	
(139) To remove seed dormancy, we can treat seed	by using this chemical.		
(A) Abscisic acid (B) Hydrochloric acid	(C) Para ascorbic acid	(D) Giberallic acid	
(140) Growth in plants is measured by the increase <i>I</i> . Fresh weight. <i>II</i> . Dry weight <i>III</i> . Length, area and volume <i>IV</i> . Cell number	in .		
(141) Choose the correct option.	(C) All except IV	(D) I II III and IV	
(A) All except <i>I</i> and <i>II</i> (B) All except <i>III</i>	(C) All except <i>IV</i>	(D) $1, 11, 111$ and $1V$	
<i>I.</i> cotton <i>II.</i> coriander <i>III.</i> Larkspur Select the right option			
(A) I, II and III only (B) I and II only	(C) <i>II</i> and <i>III</i> only	(D) I and III only	
 (143) Select the correct sequence of reaction in give (a) 3- phosphoglyceraldehyde 1, 3 biphosphoglycerate (b) 3- phosphoglyceric acid 2- phosphoglycerate (c) 1, 3 Biphosphoglyceric acid 3- phosphoglyceric acid (d) Splitting of 1, 6- fructose biphosphate to di 3- phosphoglyceradehyde 	olysis ihydroxy acetone phosp	phate and	
(A) d, c, a, b (B) b, c, a, d	(C) <i>a</i> , <i>d</i> , <i>c</i> , <i>b</i>	(D) <i>d</i> , <i>a</i> , <i>c</i> , <i>b</i>	
(144) It hastens fruit ripening in tomatoes and appl	es		
(A) <i>ABA</i> (B) <i>IAA</i>	(C) Ethylene	(D) Cytokinine	
(145) Which was the first product in light reaction of	of C_4 plants?		
(A) Malic acid (B) Oxaloacetic acid	(C) 3 PGA	(D) PGAL	
(146) Identify the step in tricarboxylic acid cycle, w (A) Succinic acid \rightarrow Malic acid	hich does not involve of (B) Succinyl- $CoA \rightarrow Su$	oxidation of substrate. ccinic acid	
(C) Isocitrate $\rightarrow \alpha$ -ketoglutaric acid	(D) Malic acid \rightarrow Oxalo	pacetic acid	
(147) In tissue culture experiments, leaf mesophyll This phenomenon may be called as	cells are put in a cultur	re medium to form callus.	
(A) Senescence (B) Differentiation	(C) Dedifferentiation	(D) Development	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(B) $a = 5 b = 1 c = 4 d$	- 9	
(1) u 2, 0 3, 0 - 0, u - 1	(D) $a = 5 \ h = 2 \ c = 1 \ d$	_ 2	
(C) u = 3, v = 1, c = 4, u = 2	(D) a = 5, v = 5, c = 1, a	- 4	

(149) In which reaction NAD^+ is not reduced to (A) Pyruvate \rightarrow Acetyl conenzyme A	$ADH + H^+$? (B) Citric acid $\rightarrow \alpha$ – Ketoglutaric acid
(C) Malic acid \rightarrow Oxaloacetic acid (150) It concerns with physical sector	(D) Succinic acid \rightarrow Malic acid
(A) Decarboxylase	(B) Lactate dehydrogenase
(C) Pyruvate dehydrgenase	(D) Hexokinase
Bi	ology PART - A
(151) A- The TCA cycle starts with the conden yieldcitric acid	sation of Acetyl group with <i>OAA</i> and water to
<i>R</i>– Kreb's cycle occurs in cytoplasm of ce(A) <i>A</i> and <i>R</i> both are correct.	II (B) A and R both are incorrect.
(C) A is correct and R is incorrect.	(D) A is incorrect and R is correct.
(152) Chemiosmotic theory of ATP synthesis in (A) K^+ gradient (B) H^+ gradient	mitochondrion is based on (C) Na^+ gradient (D) Ca^{2+} gradient
(153) Choose incorrect sentence.	
(A) The pigments are organized into two d (LHC) within the photosystem $II(PS - II)$	liscrete photochemical light harvesting complexes – <i>II</i>).
(B) The <i>LHC</i> are made up of hundreds of	pigment molecules bound to carbohydrates.
(C) The reaction center is different in both	the photosystems.
(D) In photosystem II the reaction center a	bsorbs 680 nm wavelength of red light causing.
(154) Which of them is not an extrinsic factor?	
(A) Light, O_2	(B) Temperature, CO_2
(C) Nutrient, water	(D) Growth regulator and genetic factor
(155) Maximum photosynthesis occurs in (A) Red light (B) Green light	(C) Pink light (D) Yellow light
(156) RuBisco is found in	
(A) Cytoplasm (B) Nucleus	(C) Mitochondria (D) Chloroplast
(157) The living differentiated cells, regain capa	icity of division under certain condition which called
(A) Redifferentiation (B) Dedifferentiatio	on (C) Differentiation (D) Reverse division
(158) Which one of the following pairs, is not co (A) Gibberellic acid Leaf fall	orrectly matched? (B) Cytokinin Cell division
(C) IAA Cell wall elongation	(D) Abscissic acid Stomatal closure
(159) It is the first process occurs in first phase of (A) Glucose \rightarrow Fructose	of glycolysis. (B) Dehydrogenation of glucose
(C) Phosphorylation of glucose	(D) Glucose \rightarrow Protein
(160) How many <i>NADH</i> and <i>FADH</i> are formed cycle ?	? when one molecule of citric acid enters to <i>TCA</i>
(A) $2 NADH$ and $1 FADH$	(B) $4 NADH$ and $2 FADH$
(C) $3NADH$ and $1FADH$	(D) $5 NADH$ and $2 FADH$
(101) In the expression, $W_1 = W_0 e^{rt}, W_1, W_0, r, t$ re $W_0 - W_1 - r - t$	present
(A) Initial size – Final size – Growth rate – Time – of growth	(B) Final size – initial size – Growth rate – Time of growth
(C) Final size — Initial size — Growth rate — Time of dividing	(D) Initial size – Final size – Growth rate – Time of dividing
(162) How many carbons are found in phosphog	lycolate ?
(A) 4 (B) 5 (1.6) The three bases in this diagram represented	(C) 3 (D) 2
respiration. Arrows represent net reactant	is or products. Arrows numbered 4, 8, 12 can all be
Pathway A 2→ Pathway B = 9 Pathway C→ 11	
(A) H_2O (B) ATP	(C) FAD^+ or $FADH_2$ (D) $NADH$

	 (164) Which are incorrect sentences for non-cyclic photophosphorylation ? (1) Z shape is formed when all the carriers are placed in a sequence on a redox potential scale. (2) The 4e⁻ released are accepted by various electron acceptors and finally enter into PS – II instead of returning to PS – I. (3) In this process both PS – I and PS – II take part (4) As the electrons released in various ways do not return to their original donors, such an electron transport is called non-cyclic electron transport. 				
(165)	How many ATD_{2} can	be made by $NADU$ with	$(\mathbf{C})(\mathbf{I}), (\mathbf{S}) \text{ und } (\mathbf{I})$	(D) Only (2)	
(105)1	cycle?				
	A) 24	(B) 60	(C) 4	(D) 18	
(166)	If one molecule of <i>PE</i> . synthesized?	<i>P</i> is completely oxidiz	e in glycolysis then how	v many total <i>ATPs</i> are	
()	A) 31	(B) 15	(C) 14	(D) 16	
(167)	The cells in this zone,	attain their maximal s	size in terms of wall thi	ckening and protoplasmi	.C
	modifications.		(B) Cell division and	cell elongation zone	
(1	C) Elongation zono		(D) Cell division zone	cen clongution zone	
(168)	F. Skoog discovered		(D) Cell division zone		
(1(0))	A) Ethaphon	(B) Auxin	(C) Gibberellin	(D) Kinetin	
(169) (Choose incorrect sente	ence. (For C_4 – plants)			
(1	A) The particularly lar called bundle sheat	ge cells around the va h cells.	scular bundles of the C.	4 pathway plants are	
(]	B) The light reaction ta cells.	akes place in mesophy	ll cells while CO_2 fixatio	on occurs in bundle sheat	h
(C) In C_4 plants bundle and intercellular sp	sheath cells are havir aces.	ng thick walls, imprevio	us to gaseous exchange	
(]	D) The chloroplasts in	mesophyll cells exhibit	it granna organization.		
$(170)^{1}$	In which one of the fo	llowing processes $CO_{\rm o}$	is not released?		
(170)1	A) Aerobic respiration	in plants	(B) Aerobic respiratio	n in animals	
(C) Alcoholic fermentat	tion	(D) Lactate fermentat	ion	
(171)	Which one of the follo	wing acids is a derivat	ive of carotenoids?		
(171)	(A) Indole-3-acetic acid	(B) Gibberellic acid	(C) Abscisic acid	(D) Indole butyric acid	
(172)	It is $6C$ compound	(TD) Oralla a satis a sid		(D) Citaria a sid	
((172) (A) α – Ketoglutaric aci	d B) Oxalo acetic acid	(C) Malic acid	(D) Citric acid	
(173)	Select the option white function	nich represents labe	elled part $(A, B, C \text{ or } A)$	D) correctly identified	along with
	110				
C					
(A) C : arterial capilla	ry passes oxygen to t	issues		
(B) A : alveolar cavity	main site of exchang	e of respiratory gases		
(C) D · capillary wall	exchange of O_{0} and C	O _e takes place here		
	D) B : rad blood calls	transport of CO_1 mai			
(174)	D D D D D D D D D D	1 ansport of CO_2 man	uuy.		
(174)	Column -I	I. Column -II			
	(p) Sponges	(I) Through	tracheal tubes		
	(q) Insects	(II) Throug	h lungs		
	(r) Molluscs	(III) Vascula	arized gills		
	(s) Reptiles	(IV) Simple	diffusion over their er	tire body surface	
	(V) by their moist cuticle				

p-q-r-s(B) IV - I - III - II (C) II - III - IV - I (D) I - II - III - IV(A) I - III - IV - V

(175)	Which hormone is	s primarily respons	ible for promoting	cell elongation & root growth ?
	(A) Auxin	(B) GA	(C) Cytokinin	(D) ABA
(176)	What is the role of	f cytokinin's photot	ropism & how do t	hey bring about bending of stems
	forwards light?			
	(A) Cytokinin's pr	omote cell elongati	on on the darker si	de
	(B) Cytokinin's inl	nibit cell elongation	on the lighter side	
	(C) Cytokinin's ha	ve no role in photo	tropism	
	(D) Cytokinin's pr	omote cell division	on the lighter side	
(177)	How do gibberell	ins regulate seed ge	ermination & what	is the effect of their excess or
	deficiency?			
	(A) Gibberellins p	romote seed dorma	ancy, excess cause o	over dormancy, deficiency cause
	under dormancy		-	
	(B) Gibberellins ir	hibit seed germina	tion, excess cause u	Inder germination, deficiency cause
	over germination			
	(C) Gibberellins h	ave no role in seed	germination regula	ation
	(D) Gibberellins p	romote seed germin	nation excess cause	over germination, deficiency cause
	under germination	n.		e i
(178)	A tree grow 5 cm	/ years what will be	e the height of the b	ooard fixed 10 cm above base after
	10 years?	-	_	
	(A) 50 cm	(B) 60 cm	(C) 70 cm	(D) 10 cm
(179)	How many comp	ex involve in ETS?		
	(A) 4	(B) 5	(C) 2	(D) 7
(180)	Which of the follo	wing pigment abso	orbs light in the blue	e violet region of the spectrum?
	(A) Chlorophyll a	(B) Chlorophyll b	(C) Chlorophyll c	(D) Chlorophyll d
(181)	What is the bypro	duct of the light de	pendent reaction th	nat is used to generate ATP &
	NADPH?			
	(A) Oxygen	(B) Glucose	(C) ATP	(D) Proton gradient
(182)	Which of the follo	wing factors can in	crease the rate of re	espiration in plants?
	(A) High tempera	ture (B) Low oxy	gen levels (C) H	igh light intensity (D) Water stress
(183)	The partial pressures	; (in mm Hg) of oxyge	$n(O_2)$ and carbon did	oxide (CO_2) at alveoli (the site
((A) $pO_2 = 104$ and pCO_2	$D_2 = 40$	(B) $pO_2 = 40$ and p	$pCO_2 = 45$
((C) $pO_2 = 95$ and pCO_2	2 = 40	(D) $pO_2 = 159$ and	$pCO_2 = 0.3$
(184)	Asthma is a respirati	on disease concerned	with (P) Inflormation	of brochi and brochicles
	(C) Proliferation of fil		(D) Infatimation	
(185)	The thoracic chambe	r is formed of	(D) miection in iu	1153
` ´(A) Ribs and sternum		(B) Ribs and verte	bral column
((C) Sternum and Dian	harm	(D) Verterbral colu diaphram	umn, sternum, ribs and
			diapinani.	

Biology PART - B

(186) Match the items given in Column I with those in Column II and select the correct option given below"

	Column I		Column II			
	(a)Tidal volume		(<i>i</i>) 2500 – 300	00 mL		
	(b)Inspiratory Reserve volur	ne	(<i>ii</i>) 1100 – 1200 mL			
	(c)Expiratory Reserve volun	ne	(<i>iii</i>) 500 – 55	0 mL		
	(d) Residual volume		(iv) 1000 - 11	100 mL	_	
(A) $a - iv, b - iii, c - ii, a$	d-i		(B) $a - iii, b - i, c - iv, d$	-ii	
(C) $a - i, b - iv, c - ii, d$	- iii		(D) $a - iii, b - ii, c - i, d$	-iv	
(187)	Intercostal muscles oc	cur in				
` (A) abdomen	(B) thigh		(C) ribs	(D) diaphargm	
(188)	$TV + IRV + ERV = \dots$					
(A) $IRV + ERV$	(B) $EC + TL$	C	(C) VC	(D) $TLC + RV$	
(189)	Haemoglobin is red co	olored iron co	ntaining p	bigment present is RBCs	s, O_2 bind with it in	
(A) Haemoglobin	10rm	(B) Carbamino - haemog		oglobin	
((C) Oxyhaemoglobin		(D) Bicarbonate		-	
(190)	Outer pleural membra	ane is in close	contact w	vith the		
) í	A) Surface of lungs	(B) Thoracic	lining	(C) Alveoli	(D) None of the above	
(191)	Under normal physiol deliver ml of O_2 to the	ogical conditi tissues.	ons in hur	man being every 100ml o	of oxygenated blood can	
(A) 5 ml	(B) 4 ml		(C) 10 ml	(D) 2 ml	
(192)	192) Which structure opens in alveolar sac ? (A) Primary bronchus (B) Terminal bronchiol€C) Tertiary bronchus (D) None of above					
(193)	193) Due to increasing air-borne allergens and pollutants, many people in urban areas are suffering from respiratory disorder causing wheezing due to					
((A) benign growth on mucous lining of nasal cavity.					
((B) inflammation of bronchi and bronchioles.					
((C) proliferation of fibrous tissues and damage of the alveolar walls.					
(D) reduction in the secretion of surfactants by nneumocytes						
,	(b) reduction in the beeredon of builded and by pheamocytes.					

(194)% of O_2 transported through the plasma in a dissolved state and nearly% of CO_2 is transported by RBC , whereas% of CO_2 is carried as bicarbonate.					
(A) 97%, 70%, 20 − 25	6% (B) 3%, 20 − 25%, 70%	(C) 7%, 3%, 20 − 25%	(D) 20 – 25%, 3%, 70%		
(195) Select the correct e (a) Contraction of e (b) Contraction of e (c) Pulmonary volu (d) Intra pulmonar	vents that occur during in liaphragm external inter-costal muscl ume decreases y pressure increases	nspiration. les			
(A) only (d)	(B) (a) and (b)	(C) (c) and (d)	(D) $(a), (b)$ and (d)		
(196) A man breath 12 ti air this man has in	me in a minute during thi spired ?	s he achieves 2 time <i>TL</i>	C. so what amount of total		
(A) 15,200 to 16,600	(B) 13,500 થી 14,300	(C) 10,200 થી 12,500	(D) None		
(197) Which of the follow (A) High pO_2 and Le	ving factors are favourabl esser H ⁺ concentration	e for the formation of o (B) Low pCO ₂ and Hig	xyhaemoglobin in alveoli? h H ⁺ concentration		
(C) Low pCO_2 and H	ligh temperature	(D) High pO_2 and High	n pCO ₂		
(198) $A = CO_2$ is carried $R =$ Carbonic anny	in the plasma mainly as <i>H</i> drase catalyzes the forma	HCO_3^- ions. tion of HCO_3^- ions.	-		
(A) A is true and R false	is (B) A is false and R is true	(C) Both A and R are true	(D) Both A and R are false		
(199) Functional residual capacity includes. (1) TV (2) IRV (3) RV (4) ERV					
(A) 1 and 3	(B) 3 and 4	(C) 1 and 4	(D) 1, 2, 3 and 4		
(200) Choose incorrect one.					
(A) Nasal chamber opens into nasopharynx					
(B) Larynx is bony box					
(C) During swallowing epiglottis to prevent the entry of food into the larynx.					

(D) Trachea is divides at the level of 5^{th} thoracic vertebra.